Skip to main content

High-Lift Devices Topology Robust Optimisation Using Machine Learning Assisted Optimisation

  • Conference paper
  • First Online:
Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications (UQOP 2020)

Abstract

This paper addresses the problem of designing robust optimal High-Lift Devices (HLDs) under budget limitation including the choice of their configuration as a decision variable. This task needs the coupling of a high-fidelity model and a Machine Learning Assisted Optimisation (MLAO) algorithm. For the former, the SU2 flow solver has been employed. For the latter, a chain combining a Gaussian process model for performance prediction, Random Forest for classification, and the Structured-Chromosome Genetic Algorithm (SCGA) has been developed. To predict the performance of configurations defined by different numbers of variables, a kernel able to cope with inactive variables has been adopted in the Gaussian process model. The SCGA optimisation algorithm has been used to search for the optimal HLD. SCGA extends the possible range of application imposed by standard fixed-size continuous optimisation algorithms. Indeed, using hierarchical formulations, configurational decisions that are traditionally the responsibility of expert engineers can be encoded in the problem formulation. The presented research shows the practicability of delegating the complete robust design of HLD under a limited computational budget to a specialised optimisation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (2008)

    Google Scholar 

  2. Chin, V., Peters, D., Spaid, F., Mcghee, R.: Flowfield measurements about a multi-element airfoil at high Reynolds numbers. In: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, p. 3137 (1993)

    Google Scholar 

  3. Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J.: SU2: an open-source suite for multiphysics simulation and design. AIAA J. 54(3), 828–846 (2016). https://doi.org/10.2514/1.J053813

    Article  Google Scholar 

  4. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)

    Book  Google Scholar 

  5. Gentile, L.: LorenzoGentile/SCGA: SCGA second release. Update (Jan 2020). https://doi.org/10.5281/zenodo.3627555

  6. Gentile, L., Greco, C., Minisci, E., Bartz-Beielstein, T., Vasile, M.: An optimization approach for designing optimal tracking campaigns for low-resources deep-space missions. In: 70th International Astronautical Congress (2019)

    Google Scholar 

  7. Gentile, L., Greco, C., Minisci, E., Bartz-Beielstein, T., Vasile, M.: Structured-chromosome GA optimisation for satellite tracking. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1955–1963 (2019)

    Google Scholar 

  8. Gentile, L., Morales, E., Quagliarella, D., Minisci, E., Bartz-Beielstein, T., Tognaccini, R.: High-lift devices topology optimisation using structured-chromosome genetic algorithm. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 497–505. IEEE, Piscataway (2020)

    Google Scholar 

  9. Gentile, L., Zaefferer, M., Giugliano, D., Chen, H., Bartz-Beielstein, T., Vasile, M.: Surrogate assisted optimization of particle reinforced metal matrix composites. In: Proceedings of the Genetic and Evolutionary Computation Conference (2018)

    Google Scholar 

  10. Greco, C., Gentile, L., Filippi, G., Minisci, E., Vasile, M., Bartz-Beielstein, T.: Autonomous generation of observation schedules for tracking satellites with structured-chromosome GA optimisation. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 497–505. IEEE, Piscataway (2019)

    Google Scholar 

  11. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE, Piscataway (1995)

    Google Scholar 

  12. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Analy. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  13. Horn, D., Stork, J., Schüßler, N.J., Zaefferer, M.: Surrogates for hierarchical search spaces: The wedge-kernel and an automated analysis. In: López-Ibáñez, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference - GECCO’19, pp. 916–924. GECCO ’19, ACM, Prague, Czech Republic (2019). https://doi.org/10.1145/3321707.3321765. http://doi.acm.org/10.1145/3321707.3321765

  14. Iannelli, P., Moens, F., Minervino, M., Ponza, R., Benini, E.: Comparison of optimization strategies for high-lift design. J. Aircraft 54(2), 642–658 (2017)

    Article  Google Scholar 

  15. Iannelli, P., Quagliarella, D.: Multi-objective/multi-point shape and setting high-lift system optimization by means of genetic algorithm and 2D Navier-Stokes equations. In: EUROGEN 2011 Conference proceedings, Capua (2011)

    Google Scholar 

  16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  17. Klausmeyer, S.M., Lin, J.C.: Comparative Results from a CFD Challenge Over a 2D Three-Element High-Lift Airfoil (1997)

    Google Scholar 

  18. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Statist. Assoc. 44(247), 335–341 (1949)

    Article  MathSciNet  Google Scholar 

  19. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization 2, 117–129 (1978)

    MATH  Google Scholar 

  20. Moens, F., Wervaecke, C.: Multi-point optimization of shapes and settings of high-lift system by means of evolutionary algorithm and Navier-Stokes equations. Eng. Comput. 30, 601–622 (2013)

    Article  Google Scholar 

  21. Rudnik, R., Geyr, H.: The European high lift project EUROLIFT II -objectives, approach, and structure. In: 25th AIAA Applied Aerodynamics Conference. p. 4296 (2007)

    Google Scholar 

  22. Rudolph, P.K.: High-lift systems on commercial subsonic airliners. Technical Report, National Aeronautic and Space Administration (NASA) (1996)

    Google Scholar 

  23. Smith, A.M.O.: High-lift aerodynamics. J. Aircraft 12(6), 501–530 (1975)

    Article  Google Scholar 

  24. Van Dam, C.: The aerodynamic design of multi-element high-lift systems for transport airplanes. Progress Aerosp. Sci. 38(2), 101–144 (2002)

    Article  MathSciNet  Google Scholar 

  25. Wright, M., Ziegler, A.: Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Statist. Softw. Art. 77(1), 1–17 (2017). https://doi.org/10.18637/jss.v077.i01. https://www.jstatsoft.org/v077/i01

  26. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein, T.: Efficient global optimization for combinatorial problems. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation (GECCO’14), pp. 871–878. ACM, New York (2014). http://doi.acm.org/10.1145/2576768.2598282

Download references

Acknowledgements

This research has been developed with the partial support of the H2020 MCSA ITN UTOPIAE grant agreement number 722734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Gentile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gentile, L. et al. (2021). High-Lift Devices Topology Robust Optimisation Using Machine Learning Assisted Optimisation. In: Vasile, M., Quagliarella, D. (eds) Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications. UQOP 2020. Space Technology Proceedings, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-80542-5_18

Download citation

Publish with us

Policies and ethics