Skip to main content

A Database of Hilbert Modular Forms

  • Conference paper
  • First Online:
Arithmetic Geometry, Number Theory, and Computation

Part of the book series: Simons Symposia ((SISY))

  • 925 Accesses

Abstract

We describe the computation of tables of Hilbert modular forms of parallel weight 2 over totally real fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alex J. Best, Jonathan Bober, Andrew R. Booker, Edgar Costa, John Cremona, Maarten Derickx, David Lowry-Duda, Min Lee, David Roe, Andrew V. Sutherland, and John Voight, Computing classical modular forms, Arithmetic Geometry, Number Theory, and Computation, eds. Jennifer S. Balakrishnan, Noam Elkies, Brendan Hassett, Bjorn Poonen, Andrew V. Sutherland, John Voight, Simons Symposia, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80914-0_4

  2. B. J. Birch and W. Kuyk (eds.), Modular functions of one variable IV, Lecture Notes in Mathematics, vol. 476, Springer-Verlag, 1975.

    Google Scholar 

  3. Jonathan Bober, Alyson Deines, Ariah Klages-Mundt, Benjamin LeVeque, R. Andrew Ohana, Ashwath Rabindranath, Paul Sharaba, and William Stein, A database of elliptic curves over \(\mathbb Q(\sqrt {5})\): a first report, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium, eds. Everett W. Howe and Kiran S. Kedlaya, Open Book Series 1, 2013, 145–166.

    Google Scholar 

  4. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

    Article  MathSciNet  Google Scholar 

  5. Nils Bruin, E. Victor Flynn, Josep González and Victor Rotger, On finiteness conjectures for modular quaternion algebras, Math. Proc. Cam. Phil. Soc. 141 (2006), 383–408.

    Article  Google Scholar 

  6. Henri Cohen, A course in computational number theory, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  7. L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039–1057.

    Article  MathSciNet  Google Scholar 

  8. L. Dembélé and S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic number theory (Banff, 2008), eds. Alfred van der Poorten and Andreas Stein, Lecture notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, 371–386.

    Google Scholar 

  9. Lassina Dembélé and John Voight, Explicit methods for Hilbert modular forms, Elliptic curves, Hilbert modular forms and Galois deformations, Birkhauser, Basel, 2013, 135–198.

    Google Scholar 

  10. E. Freitag, Hilbert Modular Forms, Springer-Verlag, Berlin, 1990.

    Book  Google Scholar 

  11. Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms, Math. Comp. 80 (2011), 1071–1092.

    Article  MathSciNet  Google Scholar 

  12. Markus Kirschmer and John Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. (SICOMP) 39 (2010), no. 5, 1714–1747.

    Article  MathSciNet  Google Scholar 

  13. The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org, 2016.

  14. T. R. Shemanske and L. Walling, Twists of Hilbert modular forms, Trans. Amer. Math. Soc. 338 (1993), no. 1, 375–403.

    Article  MathSciNet  Google Scholar 

  15. John Voight, Computing fundamental domains for Fuchsian groups, J. Théorie Nombres Bordeaux 21 (2009), no. 2, 467–489.

    Article  MathSciNet  Google Scholar 

  16. John Voight, Computing automorphic forms on Shimura curves over fields with arbitrary class number, Algorithmic number theory (ANTS IX, Nancy, France, 2010), eds. Guillaume Hanrot, Francois Morain, and Emmanuel Thomé, Lecture Notes in Comp. Sci., vol. 6197, Springer, Berlin, 2010, 357–371.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Lassina Dembélé and Matthew Greenberg for useful discussions. Particular thanks also go to the organizers (John Cremona, Nicolas Mascot, Aurel Page, and Haluk Şengün) of the LMFDB Workshop at the University of Warwick, June 12–16, 2017, and to John Cremona, Aurel Page, and Dan Yasaki and for their helpful efforts at this workshop and beyond. Voight was supported by an NSF Grant (DMS-0901971) during the time that these computations were first undertaken and by an NSF CAREER Award (DMS-1151047) while work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Voight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donnelly, S., Voight, J. (2021). A Database of Hilbert Modular Forms. In: Balakrishnan, J.S., Elkies, N., Hassett, B., Poonen, B., Sutherland, A.V., Voight, J. (eds) Arithmetic Geometry, Number Theory, and Computation. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-030-80914-0_12

Download citation

Publish with us

Policies and ethics