Skip to main content

Earliest Traces of Life as a Window on Life’s Origins

  • Chapter
  • First Online:
Prebiotic Chemistry and the Origin of Life

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

  • 1292 Accesses

Abstract

Life is the outcome of a complex network of chemical reactions and molecular interactions that emerged on Earth once primitive chemical automata could self-assemble in such a way that enabled them to self-reproduce and evolve. Yet exactly how, where and when life first appeared on our planet remains unknown. In this chapter, we review the various lines of evidence from fossil and geochemical traces of early life preserved in the geological record, which provide fundamental, albeit often rudimentary, insight into early life. The oldest fossils record the nature of life more than half a billion years after it emerged on Earth and suggest that considerable metabolic diversity had already evolved by this time. Microfossils, microbial mats, stromatolites and organic and inorganic geochemical signatures have been interpreted as compelling evidence for Archean biodiversity. In spite of the chemical enigmas of the earliest life and its limited record, characterization of the various classes of biosignatures indicative of life in its geological context provides guidance as to the earliest co-evolution of the geosphere and biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham, K., Hofmann, A., Foley, S.F., Cardinal, D., Harris, C., Barth, M.G., André, L.: Coupled silicon–oxygen isotope fractionation traces Archaean silicification. Earth Planet. Sci. Lett. 301, 222–230 (2011)

    ADS  Google Scholar 

  • Alleon, J., Bernard, S., Le Guillou, C., Beyssac, O., Sugitani, K., Robert, F.: Chemical nature of the 3.4 Ga Strelley Pool microfossils. Geochem. Perspect. Lett. 7, 37–42 (2018)

    Google Scholar 

  • Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W.: Stromatolite reef from the early Archean era of Australia. Nature. 441, 713–718 (2006)

    ADS  Google Scholar 

  • Allwood, A.C., Grotzinger, J.P., Knoll, A.H., Burch, I.W., Anderson, M.S., Coleman, M.L., Kanik, I.: Controls on development and diversity of Archean stromatolites. Proc. Natl. Acad. Sci. USA. 106, 9548–9555 (2009)

    ADS  Google Scholar 

  • Allwood, A.C., Kamber, B.S., Walter, M.R., Burch, I.W., Kanik, I.: Trace element record depositional history of an Early Archean stromatolitic carbonate platform. Chem. Geol. 270, 148–163 (2010)

    ADS  Google Scholar 

  • Allwood, A.C., Rosing, M.T., Flannery, D.T., Hurowitz, J.A.: Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563(7730), 241–244 (2018)

    Google Scholar 

  • Banerjee, N.R., Furnes, H., Muehlenbachs, K., Staudigel, H., de Wit, M.: Preservation of ~3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 241, 707–722 (2006)

    ADS  Google Scholar 

  • Batchelor, M.T., Burne, R.V., Henry, B.I., Watt, S.D.: Deterministic KPZ model for stromatolite laminae. Phys. A. 282, 123–136 (2002)

    Google Scholar 

  • Batchelor, M.T., Burne, R.V., Henry, B.I., Watt, S.D.: Mathematical and image analysis of stromatolite morphogenesis. Math. Geol. 35, 789–803 (2003)

    Google Scholar 

  • Bau, M., Dulski, P.: Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron- formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37–55 (1996)

    ADS  Google Scholar 

  • Benzerara, K., Menguy, N., López-García, P., Yoon, T.-H., Kazmierczak, J., Tyliszczak, T., Guyot, F., Brown Jr., G.E.: Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. USA. 103(25), 9440–9445 (2006)

    ADS  Google Scholar 

  • Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Pane, F., Ferard, C.: Significance, mechanisms and environmental implications of microbial biomineralization. Compt. Rendus Geosci. 343(2–3), 160–167 (2011)

    ADS  Google Scholar 

  • Benzerara, K., Skouri-Panet, F., Li, J., Férard, C., Gugger, M., Laurent, T., Couradeau, E., Ragon, M., Cosmidis, J., Menguy, N., Margaret-Oliver, I., Tavera, R., López-García, P., Moreira, D.: Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. USA. 111(30), 10933–10938 (2014)

    ADS  Google Scholar 

  • Bizzarri, B.M., Botta, L., Pérez-Valverde, M.I., Saladino, R., Di Mauro, E., Garcia-Ruiz, J.M.: Silica metal oxide vesicles catalyze comprehensive prebiotic chemistry. Chem. Eur. J. 24, 8126–8132 (2017)

    Google Scholar 

  • Bontognali, T.R.R., Session, A.L., Allwood, A.C., Fischer, W.W., Grotzinger, J.P., Summons, R.E., Eiler, J.M.: Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl. Acad. Sci. USA. 109, 15146–15151 (2012)

    ADS  Google Scholar 

  • Bosak, T., Greene, S.E., Newman, D.K.: A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology. 5(2), 119–126 (2007)

    Google Scholar 

  • Bosak, T., Knoll, A.H., Petroff, A.P.: The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013)

    ADS  Google Scholar 

  • Branscomb, E., Russell, J.M.: Turnstiles and bifurcators: The disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta 1827(2), 62–78 (2013)

    Google Scholar 

  • Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A., Grassineau, N.V.: Questioning the evidence for Earth’s oldest fossils. Nature. 416, 78–81 (2002)

    ADS  Google Scholar 

  • Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A., Stoakes, C.: Critical testing of Earth’s oldest putative fossil assemblage from the 3.5 Ga Apex chert, Chinaman Creek Western Australia. Precambrian Res. 140, 55–102 (2005)

    ADS  Google Scholar 

  • Brasier, M.D., Antcliffe, J., Saunders, M., Wacey, D.: Earth’s earliest fossils (3.5-1.9 Ga): changing the picture with new approaches and new discoveries. Proc. Natl. Acad. Sci. 112, 4859–4864 (2015)

    ADS  Google Scholar 

  • Buick, R.: Microfossil recognition in Archaean rocks: an appraisal of spheroids and filaments from 3500 M.Y. old chert-barite at North Pole, Western Australia. PALAIOS. 5, 441–459 (1990)

    ADS  Google Scholar 

  • Bundeleva, I.A., Shirokova, L.S., Bénézeth, P., Pokrovsky, O.S., Kompantseva, E.I., Balor, S.: Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem. Geol. 291, 116–131 (2012)

    ADS  Google Scholar 

  • Byerly, G.R., Palmer, M.R.: Tourmaline mineralization in the Barberton greenstone belt, South Africa: early Archean metasomatism by evaporite-derived boron. Contrib. Mineral. Petrol. 107, 387–402 (1991)

    ADS  Google Scholar 

  • Byerly, G.R., Lowe, D.R., Walsh, M.M.: Stromatolites from the 3300-3500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature. 319, 489–491 (1986)

    ADS  Google Scholar 

  • Cady, S.L.: Formation and preservation of bona fide microfossils. In: Signs of Life: A Report Based on the April, 2000 Workshop on Life-Detection Techniques, pp. 149–155. NRC-NAP, Washington, D.C. (2002)

    Google Scholar 

  • Cameron, V., House CH, Brantley, S.L.: A first analysis of metallome biosignatures of hyperthermophilic archaea. Archaea. (2012). https://doi.org/10.1155/2012/789278

  • Camprubí, E., de Leeuw, J.W., House CH, Raulin, F., Russell, M.J., Spang, A., Tirumalai, M.R., Westall, F.: The emergence of life. Space Sci. Rev. 215, 56 (2019)

    ADS  Google Scholar 

  • Cavalazzi, B., Barbieri, R., Gomez, F., Capaccioni, B., Olsson-Francis, K., Pondrelli, M., Rossi, A.P., Hickman-Lewis, K., Agangi, A., Gasparotto, G., Glamoclija, M., Ori, G.G., Rodriguez, N., Hagos M.: The Dallol Geothermal Area, Northern Afar (Ethiopia)–An Exceptional Planetary Field Analog on Earth. Astrobiology 19, 553–578 (2019)

    Google Scholar 

  • Censi, P., Cangemi, M., Brusca, L., Madonia, P., Saiano, F., Zuddas, P.: The behavior of rare-earth elements, Zr and Hf during biologically-mediated deposition of silica-stromatolites and carbonate-rich microbial mats. Gondwana Res. 27, 209–215 (2013)

    ADS  Google Scholar 

  • Chi Fru, E., Rodríguez, N.P., Partin, C.A., Lalone, S.V., Andersson, P., Weiss, D.J., El Albani, A., Rodushkin, I., Konhauser, K.O.: Cu isotopes in marine black shales record the Great Oxidation Event. Proc. Natl. Acad. Sci. USA. 113(18), 4941–4946 (2016)

    ADS  Google Scholar 

  • Cloud, P.: Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology. 2(4), 351–387 (1976)

    Google Scholar 

  • Cuerno, R., Escudero, C., García-Ruiz, J.-M., Herrero, M.A.: Pattern formation in stromatolites: Insights from mathematical modelling. J. R. Soc. Interface. 9, 1051–1062 (2012)

    Google Scholar 

  • Danielson, A., Möller, P., Dulski, P.: The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol. 97, 89–100 (1992)

    ADS  Google Scholar 

  • Dass, A.V., Hickman-Lewis, K., Brack, A., Kee, T.P., Westall, F.: Stochastic prebiotic chemistry within realistic prebiotic geological systems. Chem. Select. 1(15), 4906–4926 (2016)

    Google Scholar 

  • De Gregorio, B.T., Sharp, T.G.: Determining the biogenicity of microfossils in the apex chert, Western Australia, using Transmission Electron Microscopy. Lunar and Planetary Science XXXIV Houston (2003)

    Google Scholar 

  • Djokic, T., Van Kranendonk, M.J., Campbell, K.A., Walter, M.R., Ward, C.R.: Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8 (2017). https://doi.org/10.1038/ncomms15263

  • Duan, Y., Anbar, A.D., Arnold, G.L., Lyons, T.W., Gordon, G.W., Kendall, B.: Molybdenum isotope evidence for mild environmental oxygenation before the great oxidation event. Geochim. Cosmochim. Acta. 74(23), 6655–6668 (2010)

    ADS  Google Scholar 

  • Duda, J.-P., Thiel, V., Bauersachs, T., Mißbach, H., Reinhardt, M., Schäfer, N., Van Kranendonk, M.J., Reitner, J.: Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the hydrothermal pump hypothesis. Biogeosciences 15, 1535–1548 (2018)

    Google Scholar 

  • Dupraz, C., Pattisina, R., Verrecchia, E.P.: Translation of energy into morphology: simulation of stromatolite morphospace using a stocastic model. Sedimentary Geology 185(3-4), 185–203 (2006)

    Google Scholar 

  • Edwards, N.P., Manning, P.L., Bergmann, U., Larson, P.L., van Dongen, B.E., Sellers, W.I., Webb, S.M., Sokaras, D., Alonso-Mori, R., Ignatyev, K., Barden, H.E., van Veelen, A., Anné, J., Egerton, V.M., Wogelius, R.A.: Leaf metallome preserved over 50 million years. Metallomics. 6, 774–782 (2014)

    Google Scholar 

  • Fraústo da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements, p. 600. Oxford University Press, Oxford (2001)

    Google Scholar 

  • French, K.L., Hallmann, C., Hope, J.M., Schoon, P.L., Zumberge, J.A., Hoshino, Y., Peters, C.A., George, S.C., Love, G.D., Brocks, J.J., Buick, R., Summons, R.E.: Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl. Acad. Sci. USA. 112(19), 5915–5920 (2015)

    ADS  Google Scholar 

  • Furnes, H., Banerjee, N.R., Muehlenbachs, K., Staudigel, H., de Wit, M.: Early life recorded in Archean pillow lavas. Science. 304, 578–581 (2004)

    ADS  Google Scholar 

  • Furnes, H., Banerjee, N.R., Staudigel, H., Muehlenbachs, K., McLoughlin, N., de Wit, M., Van Kranendonk, M.: Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156–176 (2007)

    ADS  Google Scholar 

  • Garcia-Ruiz, J.M., Hyde, S.T., Carnerup, A.M., Christy, A.G., Van Kranendonk, M.J., Welham, N.J.: Self-assembled silica-carbonate structures and detection of ancient microfossils. Science. 302(5648), 1194–1197 (2003)

    ADS  Google Scholar 

  • Garcia-Ruiz, J.M., van Zuilen, M.A., Bach, W.: Mineral self-organization on a lifeless planet. Phys Life Rev. (2020)

    Google Scholar 

  • Glikson, M., Duck, L.J., Golding, S.D., Hofmann, A., Bolhar, R., Webb, R., Baiano, J.C.F., Sly, L.I.: Microbial remains in some earliest Earth rocks: comparison with a potential modern analogue. Precambrian Res. 164, 187–200 (2008)

    ADS  Google Scholar 

  • Gourcerol, B., Thurston, P.C., Kontak, D.J., Côté-Mantha, O.: Interpretations and implications of LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Western Churchill Province, Nunavut. Chem. Geol. 410, 89–107 (2015)

    ADS  Google Scholar 

  • Grassineau, N.F., Abell, P., Appel, P.W.U., Lowry, D., Nisbet, E.G.: Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga). In: Kesler, S.E., Ohmoto, H. (eds.) Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere––Constraints from Ore Deposits: GSA Memoir, vol. 198, pp. 33–52. Sage, New York (2006)

    Google Scholar 

  • Grosch, E.G., McLoughlin, N.: Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc. Natl. Acad. Sci. USA. 111, 8380–8385 (2014)

    ADS  Google Scholar 

  • Grotzinger, J.P., Knoll, A.H.: Stromatolites in precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999)

    ADS  Google Scholar 

  • Grotzinger, J.P., Rothman, D.R.: An abiotic model for stromatolite morphogenesis. Nature. 383, 423–425 (1996)

    ADS  Google Scholar 

  • Heubeck, C.: An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology. 37, 931–934 (2009)

    ADS  Google Scholar 

  • Hickman-Lewis, K., Garwood, R.J., Brasier, M.D., Goral, T., Jiang, H., McLoughlin, N., Wacey, D.: Carbonaceous microstructures of the 3.46 Ga stratiform ‘Apex chert’, Chinaman Creek locality, Pilbara, Western Australia. Precambrian Res. 278, 161–178 (2016)

    ADS  Google Scholar 

  • Hickman-Lewis, K., Garwood, R.J., Withers, P.J., Wacey, D.: X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains. In: Brasier, A.T., McIlroy, D., McLoughlin, N. (eds.) Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier, vol. 448, pp. 33–56. Geological Society of London Special Publication, London (2017)

    Google Scholar 

  • Hickman-Lewis, K., Cavalazzi, B., Foucher, F., Westall, F.: Most ancient evidence for life in the Barberton Greenstone Belt: microbial mats and biofabrics of the ~3.47 Ga Middle Marker Horizon. Precambrian Res. 312, 45–67 (2018)

    ADS  Google Scholar 

  • Hickman-Lewis, K., Gautret, P., Arbaret, L., Sorieul, S., De Wit, R., Foucher, F., Cavalazzi, B., Westall, F.: Mechanistic morphogenesis of organo-sedimentary structures growing under geochemically stressed conditions: Keystone to the interpretation of some Archaean stromatolites? Geosciences. 9, 359 (2019)

    ADS  Google Scholar 

  • Hickman-Lewis, K., Gourcerol, B., Westall, F., Manzini, D., Cavalazzi, B.: Reconstructing Palaeoarchaean microbial biomes flourishing in the presence of emergent landmasses using trace and rare earth element systematics. Precambrian Res. (2020c). https://doi.org/10.1016/j.precamres.2020.105689

  • Hickman-Lewis, K., Cavalazzi, B., Sorieul, S., Gautret, P., Foucher, F., Whitehouse, M.J., Jeon, H., Cockell, C.S., Georgelin, T., Westall, F.: Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth’s earliest ecosystems. Sci. Rep. 10(1) (2020b). https://doi.org/10.1038/s41598-020-61774-w

  • Hickman-Lewis, K., Westall, F., Cavalazzi, B.: Diverse communities of bacteria and archaea flourished in Palaeoarchaean (3.5-3.3 Ga) microbial mats. Palaeontology. (2020a). https://doi.org/10.1111/pala.12504

  • Hofmann, H.J., Grey, K., Hickman, A.H., Thorpe, R.I.: Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. GSA Bull. 111, 1256–1262 (1999)

    Google Scholar 

  • Homann, M., Heubeck, C., Airo, A., Tice, M.M.: Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 266, 47–64 (2015)

    ADS  Google Scholar 

  • Homann, M., Sansjofre, P., van Zuilen, M., Heubeck, C., Gong, J., Killingsworth, B., Foster, I.S., Airo, A., Van Kranendonk, M.J., Ader, M., Lalonde, S.V.: Microbial life and biogeochemical cycling on land 3,220 million years ago. Nat. Geosci. 11, 665–671 (2018)

    ADS  Google Scholar 

  • Hren, M.T., Tice, M.M., Chamberlain, C.P.: Oxygen and hydrogen isotope evidence for a temperate climate 3.42 billion years ago. Nature. 205, 205–208 (2009)

    ADS  Google Scholar 

  • Igisu, M., Ueno, Y., Takai, K.: FTIR microspectroscopy of carbonaceous matter in ~3.5 Ga seafloor hydrothermal deposits in the North Pole area, Western Australia. Prog. Earth Planet. Sci. 5 (2018). https://doi.org/10.1186/s40645-018-0242-1

  • Izon, G., Zerkle, A.L., Williford, K.H., Farquhar, J., Poulton, S.W., Claire, M.W.: Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc. Natl. Acad. Sci. USA. 114(13), E2571–E2579 (2017)

    ADS  Google Scholar 

  • Johannesson, K.H., Telfeyan, K., Chevis, D.A., Rosenheim, B.E., Leybourne, M.I.: Rare earth elements in stromatolites–1. Evidence that modern terrestrial stromatolites fractionate rare earth elements during incorporation from ambient waters. In: Dilek, Y., Furnes, H. (eds.) Evolution of Archean Crust and Early Life. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-7615-9_14

    Chapter  Google Scholar 

  • Kamber, B.S., Webb, G.E.: The geochemistry of late Archean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta. 65, 2509–2525 (2001)

    ADS  Google Scholar 

  • Kendall, B., Brennecka, G.A., Weyer, S., Anbar, A.D.: Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem. Geol. 362, 105–114 (2013)

    ADS  Google Scholar 

  • Kiyokawa, S., Ito, T., Ikehara, M., Kitajima: Middle Archean volcano-hydrothermal sequience: Bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. GSA Bull. 118(1–2), 3–22 (2006)

    Google Scholar 

  • Kiyokawa, S., Koge, S., Ito, T., Ikehara, M.: An ocean-floor carbonaceous sedimentary sequence in the 3.2-Ga Dixon Island Formation, coastal Pilbara terrane, Western Australia. Precambrian Res. 255(1), 124–143 (2014)

    ADS  Google Scholar 

  • Knauth, L.P.: Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005)

    Google Scholar 

  • Knoll, A.H., Barghoorn, E.S.: Archean microfossils showing cell division from the Swaziland system of South Africa. Science. 198, 396–398 (1977)

    ADS  Google Scholar 

  • Kozawa, T., Sugitani, K., Oehler, D.Z., House CH, Saito, I., Watanabe, T., Gotoh, T.: Early Archean plaktonic mode of life: implications from fluid dynamics of lenticular microfossils. Geobiology. 17(2), 113–126 (2019)

    Google Scholar 

  • Lin, W., Paterson, G.A., Zhu, Q., Wang, Y., Kopylova, E., Li, Y., Knight, R., Bazylinski, D.A., Zhu, R., Kirschvink, J.L., Pan, Y.: Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl. Acad. Sci. USA. 114(9), 2171–2176 (2017)

    ADS  Google Scholar 

  • Lowe, D.R.: Abiological origin of described stromatolites older than 3.2 Ga. Geology. 22, 387–390 (1994)

    ADS  Google Scholar 

  • Maldanis, L., Hickman-Lewis, K., Verezhak, M., Gueriau, P., Guizar-Sicairos, M., Jaqueto, P., Trinidade, R.I.F., Rossi, A.L., Berenguer, F., Westall, F., Bertrand, L., Galante, D.: Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters. Sci. Rep. 10, 8163 (2020)

    ADS  Google Scholar 

  • Marin-Carbonne, J., Remusat, L., Sforna, M.C., Thomazo, C., Cartigny, P., Philippot, P.: Sulfur isotope’s signal of nanopyrites enclosed in 2.7 Ga stromatolitic organic remains reveal microbial sufate reduction. Geobiology. 16(2), 121–138 (2018)

    Google Scholar 

  • Martin, W., Baross, J., Kelley, D., Russell, M.J.: Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008)

    Google Scholar 

  • McCollum, T.M., Seewald, J.S.: Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet. Sci. Lett. 243, 74–84 (2006)

    ADS  Google Scholar 

  • McLoughlin, N., Wilson, L.A., Brasier, M.D.: Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology. 6, 95–105 (2008)

    Google Scholar 

  • McMahon, S.: Earth’s earliest and deepest purported fossils may be iron-mineralized chemical gardens. Proc. R. Soc. B. 286, 20192410 (2019)

    Google Scholar 

  • Moore, E.K., Jelen, B.I., Giovannelli, D., Raanan, H., Falkowski, P.G.: Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017)

    ADS  Google Scholar 

  • Muir, M.D., Grant, P.R.: Micropalaeontological evidence from the Onverwacht Group, South Africa. In: Windley, B.F. (ed.) The Early History of the Earth, pp. 595–608. Wiley/Interscience, London (1976)

    Google Scholar 

  • Nisbet, E.G., Sleep, N.H.: The habitat and nature of early life. Nature. 409, 1083–1091 (2001)

    ADS  Google Scholar 

  • Noffke, N.: Microbial Mats in Sandy Deposits from the Archean Era to Today, 175 p. Springer, New York (2010)

    Google Scholar 

  • Noffke, N., Eriksson, K.A., Hazen, R.M., Simpson, E.L.: A new window into Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology. 34, 253–256 (2006)

    ADS  Google Scholar 

  • Noffke, N., Christian, D., Wacey, D., Hazen, R.M.: Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology. 13, 1103–1124 (2013)

    ADS  Google Scholar 

  • Nutman, A.P., Bennett, V.C., Friend, C.R., Van Kranendonk, M.J., Chivas, A.R.: Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature. 537, 535–538 (2016)

    ADS  Google Scholar 

  • Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Rothacker, L., Chivas, A.R.: Cross-examining earth’s oldest stromatolites: seeing through the effects of heterogeneous deformation, metamorphoism and metasomatism affecting Isua (Greenland) ~3700 Ma sedimentary rocks. Precambrian Res. 331 (2019). https://doi.org/10.1016/j.precamres.2019.105347

  • Oehler, D., Cady, S.L.: Biogenicity and syngeneity of organic matter in ancient sediments: recent advances in the search for evidence of past life. Challenges. 5(2), 260–283 (2014)

    ADS  Google Scholar 

  • Oehler, D.Z., Walsh, M.M., Sugitani, K., Liu, M.-C., House, C.H.: Large and robust lenticular microorganisms on the young Earth. Precambrian Res. 296, 112–119 (2017)

    ADS  Google Scholar 

  • Olempska, E., Wacey, D.: Ambient inclusion trails in Palaeozoic crustaceans (Phosphatocopina and Ostracoda). Palaeogeogr. Palaeoclimatol. Palaeoecol. 441(4), 949–958 (2016)

    Google Scholar 

  • Oonk, P., Tsikos, H., Mason, P., Henkel, S., Staubwasser, M., Williams, H.: Species-specific Fe-isotopes on Palaeoproterozoic BIF and their implications. In: 35th International Geological Congress, Cape Town, South Africa, 27 August 2016-4 September 2016 (2016)

    Google Scholar 

  • Petroff, A.P., Sim, M.S., Maslov, A., Krupenin, M., Rothman, D.H., Bosak, T.: Biophysical basis for the geometry of conical stromatolites. Proc. Natl. Acad. Sci. USA. 107, 9956–9961 (2010)

    ADS  Google Scholar 

  • Philippot, P., Ávila, J.N., Killingsworth, B.A., Tessalina, S., Baton, F., Caquineau, T., Muller, E., Pecoits, E., Cartigny, P., Lalonde, S.F., Ireland, T.R., Thomazo, C., vanKranendonk, M.J., Busigny, V.: Globally asynchronous sulphur isotope signatls require re-definition of the great oxidation event. Nat. Commun. 9 (2018). https://doi.org/10.1038/s41467-018-04621-x

  • Rasmussen, B.: Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature. 405, 676–679 (2000)

    ADS  Google Scholar 

  • Reid, R.P., James, N.P., Macintyre, I.G., Dupraz, C.P., Burne, R.V.: Shark Bay stromatolites: microfabrics and reinterpretations of origins. Facies. 9, 243–270 (2003)

    Google Scholar 

  • Riding, R.: The nature of stromatolites: 3,500 million year history and a century of research. In: Reitner, J., Quéric, N.-V., Arp, G. (eds.) Advances in Stromatolite Geobiology, pp. 29–74. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  • Rosing, M.T.: 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science. 283, 674–676 (1999)

    ADS  Google Scholar 

  • Schidlowski, M.: Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res. 106(1–2), 117–134 (2001)

    ADS  Google Scholar 

  • Schopf, J.W., Packer, B.M.: Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science. 237(4810), 70–73 (1987)

    ADS  Google Scholar 

  • Schopf, J.W., Walter, M.R.: Archean microfossils: new evidence of ancient microbes. In: Schopf, J.W. (ed.) Earth’s Earliest Biosphere: Its Origin and Evolution, pp. 214–239. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  • Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J., Czaja, A.D.: Laser-Raman imagery of Earth’s earliest fossils. Nature. 416, 73–76 (2002)

    ADS  Google Scholar 

  • Schopf, J.W., Kudryavtsev, A.B., Dzaja, A.D., Tripathi, A.B.: Evidence of archean life: stromatolites and microfossils. Precambrian Res. 158, 141–155 (2007)

    ADS  Google Scholar 

  • Sforna, M.C., Daye, M., Philippot, P., Somogyi, A., van Zuilen, M.A., Medjoubi, K., Gérard, E., Jamme, F., Dupraz, C., Braissant, O., Glunk, G., Visscher, P.T.: Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. Geobiology 15(2), 259–279 (2017)

    Google Scholar 

  • Shields, G., Webb, G.: Has the REE composition of seawater changed over geological time? Chem. Geol. 204, 103–107 (2004)

    ADS  Google Scholar 

  • Sleep, N.H.: The Hadean-Archaean environment. Cold Spring Harb. Perspect. Biol. 2, a002527 (2010)

    Google Scholar 

  • Sleep, N.H.: Planetary interior-atmosphere interaction and habitability. In: Deeg, H.J., Belmonte, J.A. (eds.) Handbook of Exoplanets, pp. 1–22. Springer, Berlin (2018)

    Google Scholar 

  • Staudigel, H., Furnes, H., de Wit, M.: Paleoarchean trace fossils in altered volcanic glass. Proc. Natl. Acad. Sci. USA. 112, 6892–6897 (2015)

    ADS  Google Scholar 

  • Sugahara, H., Sugitani, K., Mimura, K., Yamashita, F., Yamamoto, K.: A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil-bearing black cherts. Precambrian Res. 177, 73–87 (2010)

    ADS  Google Scholar 

  • Sugitani, K., Grey, K., Allwood, A., Nagaoka, T., Mimura, K., Minami, M., Marshall, C.P., Van Kranendonk, M.J., Walter, M.R.: Diverse microstructures from Archean chert from the Mount Goldsworthy-Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils, or pseudofossils? Precambrian Res. 158, 228–262 (2007)

    ADS  Google Scholar 

  • Sugitani, K., Grey, K., Nagaoka, T., Mimura, K., Walter, M.R.: Taxonomy and biogenicity of Archaean spheroidal microfossils (ca. 3.0 Ga) from the Mount Goldsworthy-Mount Grant area in the northeastern Pilbara Craton, Western Australia: Precambrian Res. 173, 50–59 (2009)

    Google Scholar 

  • Sugitani, K., Mimura, K., Takeuchi, M., Yamaguchi, T., Suzuki, K., Senda, R., Asahara, Y., Wallis, S., Van Kranendonk, M.J.: A Paleoarchean coastal hydrothermal field inhabited by diverse microbial communities: the Strelley Pool Formation, Pilbara Craton, Western Australia. Geobiology. 13, 522–545 (2015)

    Google Scholar 

  • Summons, R.E., Amend, J.P., Bish, D., Buick, R., Cody, G.D., Des Marais, D.J., Dromart, G., Eigenbrode, J.L., Knoll, A.H., Sumner, D.Y.: Preservation of martian organic and environmental records: Final report of the biosignature working group. Astrobiology. 11(2), 157–181 (2011)

    ADS  Google Scholar 

  • Takahashi, Y., Châtellier, X., Hattori, K.H., Kato, K., Fortin, D.: Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mat. Chem. Geol. 219, 53–67 (2005)

    ADS  Google Scholar 

  • Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F., Robert, F.: Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017)

    Google Scholar 

  • Tashiro, T., Ishida, A., Hori, M., Igisu, M., Koike, M., Mejean, P., Takahata, N., Sano, Y., Komiya, T.: Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature. 549, 516–518 (2017)

    ADS  Google Scholar 

  • Teng, F.-Z., Dauphas, N., Watkins, J.M.: Non-traditional stable isotopes: retrospective and prospective. Rev. Mineral. Geochem. 82, 1–26 (2017)

    Google Scholar 

  • Tice, M.M.: Environmental controls on photosynthetic microbial mat distribution on and morphogenesis on a 3.42 Ga clastic-starved platform. Astrobiology. 9, 989–1000 (2009)

    ADS  Google Scholar 

  • Tice, M.M., Lowe, D.R.: Photosynthetic microbial mats in the 3416-Myr-old ocean. Nature. 431, 549–552 (2004)

    ADS  Google Scholar 

  • Tice, M.M., Lowe, D.R.: Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology. 34, 37–40 (2006a)

    ADS  Google Scholar 

  • Tice, M.M., Lowe, D.R.: The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: a review and new evidence from the 3.42 Ga Buck Reef Chert. Earth Sci. Rev. 76, 259–300 (2006b)

    ADS  Google Scholar 

  • Tomescu, A.M.F., Klymiuk, A.A., Matsunaga, K.K.S., Bippus, A.C., Shelton, G.W.K.: Microbes and the fossil record. In: Hurst, C.J. (ed.) Advances in Environmental Microbiology. Their World: A Diversity of Microbial Environments, pp. 69–169. Springer, Heidelberg (2016)

    Google Scholar 

  • Trower, E.J., Lowe, D.R.: Sedimentology of the ~3.3 Ga upper Mendon Formation, Barberton Greenstone Belt, South Africa. Precambrian Res. 281, 473–494 (2016)

    ADS  Google Scholar 

  • Ueno, Y., Isozaki, Y., Yurimoto, H., Maruyama, S.: Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. Int. Geol. Rev. 43(3), 196–212 (2001a)

    Google Scholar 

  • Ueno, Y., Maruyama, S., Isozaki, Y., Yurimoto, H.: Early Archean (ca. 3.5 Ga) microfossils and 13C- depleted carbonaceous matter in the North Pole area, Western Australia: field occurrence and geochemistry. In: Nakashima, S., Maruyama, S., Brack, A., Windley, B.F. (eds.) Geochemistry and the Origin of Life, pp. 201–236. Universal Academy Press, Tokyo (2001b)

    Google Scholar 

  • Ueno, Y., Isozaki, Y., McNamara, K.J.: Coccoid-like microstructures in a 3.0 Ga chert from Western Australia. Int. Geol. Rev. 48(1), 78–88 (2006a)

    Google Scholar 

  • Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S., Isozaki, Y.: Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature. 440, 516–519 (2006b)

    ADS  Google Scholar 

  • Ueno, Y., Ono, S., Rumble, D., Maruyama, S.: Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archaen. Geochim. Cosmochim. Acta. 72(23), 5675–5691 (2008)

    ADS  Google Scholar 

  • van den Boorn, S.H.J.M., van Bergen, M., Nijman, W., Vroon, P.: Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology. 35, 939–942 (2007)

    ADS  Google Scholar 

  • van den Boorn, S.H.J.M., van Bergen, M.J., Vroon, P.Z., de Vries, S.T., Nijman, W.: Silicon isotope and trace element constraints on the origin of ~3.5 Ga cherts: implications for early Archaean marine environments. Geochim. Cosmochim. Acta. 74, 1077–1103 (2010)

    ADS  Google Scholar 

  • Van Kranendonk, M.J.: Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: new evidence from the Warrawoona Group, Pilbara Craton, Western Australia. Earth Sci. Rev. 74, 197–240 (2006)

    ADS  Google Scholar 

  • Van Kranendonk, M.J., Webb, G.E., Kamber, B.S.: Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology. 1(2), 91–108 (2003)

    Google Scholar 

  • Van Zuilen, M.A., Chaussidon, M., Rollion-Bard, C., Marty, B.: Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures. Geochim. Cosmochim. Acta. 71(3), 655–669 (2007)

    ADS  Google Scholar 

  • Wacey, D.: ~3,240 Ma, Kangaroo Caves formation, East Pilbara, Western Australia. In: Wacey, D. (ed.) Early Life on Earth, pp. 221–227. Springer, Dordrecht (2009)

    Google Scholar 

  • Wacey, D., Kilburn, M., Stoakes, C., Aggleton, H., Brasier, M.: Ambient inclusion trails: their recognition, age, range, and applicability to early life on Earth. In: Dikel, Y., Furnes, H., Muehlenbachs, K. (eds.) Links Between Geological Processes, Microbial Activities and Evolution of Life, vol. 4, pp. 113–134. Springer, Dordrecht (2008b)

    Google Scholar 

  • Wacey, D., Kilburn, M.R., McLoughlin, N., Parnell, J., Stoakes, C.A., Grovenor, C.R.M., Brasier, M.D.: Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. J. Geol. Soc. 165, 43–53 (2008a)

    ADS  Google Scholar 

  • Wacey, D., Kilburn, M.R., Saunders, M., Cliff, J., Brasier, M.D.: Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698–702 (2011)

    ADS  Google Scholar 

  • Wacey, D., McLouglin, N., Kilburn, M.R., Saunders, M., Cliff, J.B., Kong, C., Barley, M.E., Brasier, M.D.: Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ∼1.9-Ga Gunflint chert. Proc. Natl. Acad. Sci. USA. 110, 8020–8024 (2013)

    ADS  Google Scholar 

  • Wacey, D., Saunders, M., Cliff, J., Kilburn, M.R., Kong, C., Barley, M.E., Brasier, M.D.: Geochemistry and nano-structure of a putative ~3240 million-year-old black smoker biota, Sulphur Springs Group, Western Australia. Precambrian Res. 249, 1–12 (2014)

    ADS  Google Scholar 

  • Wacey, D., Saunders, M., Kong, C., Brasier, A.T., Brasier, M.D.: 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res. 36, 296–313 (2016)

    ADS  Google Scholar 

  • Wacey, D., Saunders, M., Kong, C.: Remarkably preserved tephra from the 3430 Ma Strelley Pool Formation, Western Australia: Implications for the interpretation of Precambrian microfossils. Earth Planet. Sci. Lett. 487, 33–43 (2018)

    Google Scholar 

  • Walsh, M.M.: Microfossils and possible microfossils from the early Archean Onverwacht group, Barberton Mountain Land, South Africa. Precambrian Res. 54, 271–293 (1992)

    ADS  Google Scholar 

  • Walsh, M.M., Lowe, D.R.: Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature. 314, 530–532 (1985)

    ADS  Google Scholar 

  • Walsh, M.M., Lowe, D.R.: Modes of accumulation of carbonaceous matter in the early Archaean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe, D.R., Byerly, G.R. (eds.) Geologic Evolution of the Barberton Greenstone Belt, South Africa, vol. 329, pp. 115–132. Geological Society of America, Boulder (1999)

    Google Scholar 

  • Walsh, M.M., Westall, F.: Archean biofilms preserved in the Swaziland Supergroup, South Africa. In: Krumbein, W.E., Paterson, D.M., Zavarzin, G.A. (eds.) Fossil and Recent Biofilms, pp. 307–316. Kluwer, Dordrecht (2003)

    Google Scholar 

  • Walter, M.R., Buick, R., Dunlop, J.: Stromatolites, 3400–3500 Myr old from the North Pole area, Western Australia. Nature. 284, 443–445 (1980)

    ADS  Google Scholar 

  • Westall, F., Brack, A.: The importance of water for life. Space Sci. Rev. 214, 50 (2018)

    ADS  Google Scholar 

  • Westall, F., de Vries, S.T., Nijman, W., Rouchon, V., Orberger, B., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D., Anne, S.: The 3.466Ga Kitty’s Gap chert, an Early Archean microbial ecosystem. In: Reimold, W.U., Gibson, R.L. (eds.) Processes on the Early Earth, vol. 405, pp. 105–131. Geological Society of America, Boulder (2006)

    Google Scholar 

  • Westall, F., Foucher, F., Cavalazzi, B., de Vries, S., Nijman, W., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D., Anne, S.: Volcaniclastic habitats for early life on Earth and Mars: a case study from c.3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59, 1093–1106 (2011)

    ADS  Google Scholar 

  • Westall, F., Campbell, K.A., Bréhéret, F.G., Foucher, F., Gautret, P., Hubert, A., Sorieul, S., Grassineau, N., Guido, D.M.: Complex microbe-sediment systems are ancient (3.33 Ga) and flourished in a hydrothermal context. Geology. 43, 615–618 (2015)

    ADS  Google Scholar 

  • Westall, F., Hickman-Lewis, K., Hinman, N., Gautret, P., Campbell, K.A., Bréhéret, J.G., Foucher, F., Hubert, A., Sorieul, S., Dass, A.V., Kee, T.P., Georgelin, T., Brack, A.: A hydrothermal-sedimentary context for the origin of life. Astrobiology. 18(3), 259–293 (2018)

    ADS  Google Scholar 

  • Williams, R.J.P.: Chemical selection of elements by cells. Coord. Chem. Rev. 216–217, 583–595 (2001)

    Google Scholar 

  • Zerkle, A.L., House, C.H., Brantley, S.L.: Biogeochemical signatures through time as inferred from whole microbial genomes. Am. J. Sci. 305, 467–502 (2005)

    ADS  Google Scholar 

  • Zhang, M., Konishi, H., Xu, H., Sun, X., Lu, H., Wu, D., Wu, N.: Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. J. Asian Earth Sci. 92, 293–301 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

SLC thanks the NASA Astrobiology Institute (NASA CAN7 Award# 16BB06I to the SETI Institute) and the PNNL EMSL user facility (DoE BER program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keyron Hickman-Lewis , André Brack or Sherry L. Cady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavalazzi, B., Hickman-Lewis, K., Brack, A., Cady, S.L. (2021). Earliest Traces of Life as a Window on Life’s Origins. In: Neubeck, A., McMahon, S. (eds) Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-81039-9_10

Download citation

Publish with us

Policies and ethics