Skip to main content

Reconstructing the Last Universal Common Ancestor

  • Chapter
  • First Online:
Prebiotic Chemistry and the Origin of Life

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

  • 1275 Accesses

Abstract

There is general agreement that bacteria, archaea, and eukarya share common ancestry. However, tracing back extant lineages to reconstruct the ancestral gene set of the three domains has proven to be non-trivial, as there is little unambiguous signal this far back in time. In this chapter, I explain the basic principles behind reconstruction of the Last Universal Common Ancestor (LUCA) and summarise a few of the challenges associated with reconstruction. Finally, I consider whether a mid-resolution LUCA might be the most achievable goal, particularly from the perspective of the classes of chemistry available to early life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andam, C.P., Williams, D., Gogarten, J.P.: Natural taxonomy in light of horizontal gene transfer. Biol. Philos. 25(4), 589–602 (2010)

    Article  Google Scholar 

  • Beringer, M., Rodnina, M.V.: The ribosomal peptidyl transferase. Mol. Cell. 26(3), 311–321 (2007)

    Article  Google Scholar 

  • Berkemer, S.J., McGlynn, S.E.: A new analysis of archaea-bacteria domain separation: variable phylogenetic distance and the tempo of early evolution. Mol. Biol. Evol. 37(8), 2332–2340 (2020)

    Article  Google Scholar 

  • Boerlijst, M.C., Hogeweg, P.: Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Phys. D. 48(1), 17–28 (1991)

    Article  MATH  Google Scholar 

  • Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N., Gouy, M.: Parallel adaptations to high temperatures in the Archaean eon. Nature. 456(7224), 942–945 (2008)

    Article  ADS  Google Scholar 

  • Brindefalk, B., Dessailly, B.H., Yeats, C., Orengo, C., Werner, F., Poole, A.M.: Evolutionary history of the TBP-domain superfamily. Nucleic Acids Res. 41(5), 2832–2845 (2013)

    Article  Google Scholar 

  • Caetano-AnollĂŠs, G., Caetano-AnollĂŠs, D.: An evolutionarily structured universe of protein architecture. Genome Res. 13(7), 1563–1571 (2003)

    Article  Google Scholar 

  • Caetano-AnollĂŠs, G., Kim, H.S., Mittenthal, J.E.: The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc. Natl. Acad. Sci. USA. 104(22), 9358–9363 (2007)

    Article  ADS  Google Scholar 

  • Caetano-AnollĂŠs, G., Mittenthal, J.E., Caetano-AnollĂŠs, D., Kim, K.M.: A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity. Front. Genet. 5, 306 (2014)

    Google Scholar 

  • Cermakian, N., Cedergren, R.: Modified nucleotides always were: an evolutionary model. In: Grosjean, H., Benne, R. (eds.) Modification and Editing of RNA, pp. 535–541. ASM Press, Washington, DC (1998)

    Google Scholar 

  • Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science. 311(5765), 1283–1287 (2006)

    Article  ADS  Google Scholar 

  • Coleman, G.A., Pancost, R.D., Williams, T.A.: Investigating the origins of membrane phospholipid biosynthesis genes using outgroup-free rooting. Genome Biol. Evol. 11(3), 883–898 (2019)

    Article  Google Scholar 

  • Copley, S.D.: Moonlighting is mainstream: paradigm adjustment required. BioEssays. 34(7), 578–588 (2012)

    Article  Google Scholar 

  • Dagan, T., Martin, W.: The tree of one percent. Genome Biol. 7(10), 118 (2006)

    Article  Google Scholar 

  • Dagan, T., Roettger, M., Bryant, D., Martin, W.: Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379–392 (2010)

    Article  Google Scholar 

  • Doolittle, W.F.: Phylogenetic classification and the universal tree. Science. 284(5423), 2124–2129 (1999)

    Article  Google Scholar 

  • Doolittle, W.F.: W. Ford Doolittle. Curr. Biol. 14(5), R176–R177 (2004)

    Article  Google Scholar 

  • Forterre, P.: Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33(3), 457–465 (1999)

    Article  Google Scholar 

  • Forterre, P.: Genomics and early cellular evolution. The origin of the DNA world. C. R. Acad. Sci. III. 324(12), 1067–1076 (2001)

    Article  Google Scholar 

  • Forterre, P.: The origin of DNA genomes and DNA replication proteins. Curr. Opin. Microbiol. 5(5), 525–532 (2002)

    Article  Google Scholar 

  • Forterre, P.: The universal tree of life: an update. Front. Microbiol. 6, 717 (2015)

    Article  Google Scholar 

  • Forterre, P., Grosjean, H.: The Interplay Between RNA and DNA Modifications: Back to the RNA World. Molecular Biology Intelligence Unit Landes Bioscience. Springer, Austin, TX (2009)

    Google Scholar 

  • Forterre, P., Philippe, H.: Where is the root of the universal tree of life? BioEssays. 21(10), 871–879 (1999)

    Article  Google Scholar 

  • Forterre, P., FilĂŠe, J., Myllykallio, H.: Origin and evolution of DNA and DNA replication machineries. In: de Pouplana, L.R. (ed.) The Genetic Code and the Origin of Life. Landes Bioscience, Georgetown, TX (2004)

    Google Scholar 

  • Fullmer, M.S., Soucy, S.M., Gogarten, J.P.: The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front. Microbiol. 6, 728 (2015)

    Article  Google Scholar 

  • Galtier, N., Tourasse, N., Gouy, M.: A nonhyperthermophilic common ancestor to extant life forms. Science. 283(5399), 220–221 (1999)

    Article  Google Scholar 

  • Gardner, P.P., Bateman, A., Poole, A.M.: SnoPatrol: how many snoRNA genes are there? J. Biol. 9(1), 4 (2010)

    Article  Google Scholar 

  • Gaspin, C., Cavaille, J., Erauso, G., Bachellerie, J.P.: Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol. 297(4), 895–906 (2000)

    Article  Google Scholar 

  • Glansdorff, N., Xu, Y., Labedan, B.: The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct. 3, 29 (2008)

    Article  Google Scholar 

  • Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., et al.: Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA. 86(17), 6661–6665 (1989)

    Article  ADS  Google Scholar 

  • Goldman, A.D., Baross, J.A., Samudrala, R.: The enzymatic and metabolic capabilities of early life. PLoS One. 7(9), e39912 (2012)

    Article  ADS  Google Scholar 

  • Goldman, A.D., Bernhard, T.M., Dolzhenko, E., Landweber, L.F.: LUCApedia: a database for the study of ancient life. Nucleic Acids Res. 41(Database issue), D1079–D1082 (2013)

    Google Scholar 

  • Gribaldo, S., Brochier-Armanet, C.: Evolutionary relationships between archaea and eukaryotes. Nat. Ecol. Evol. 4(1), 20–21 (2020)

    Article  Google Scholar 

  • Gribaldo, S., Poole, A.M., Daubin, V., Forterre, P., Brochier-Armanet, C.: The origin of eukaryotes and their relationship with the archaea: are we at a phylogenomic impasse? Nat. Rev. Microbiol. 8(10), 743–752 (2010)

    Article  Google Scholar 

  • Hacker, J., Carniel, E.: Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2(5), 376–381 (2001)

    Article  Google Scholar 

  • Harris, J.K., Kelley, S.T., Spiegelman, G.B., Pace, N.R.: The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003)

    Article  Google Scholar 

  • Hoeppner, M.P., Poole, A.M.: Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility. BMC Evol. Biol. 12, 183 (2012)

    Article  Google Scholar 

  • Hoeppner, M.P., Gardner, P.P., Poole, A.M.: Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput. Biol. 8(11), e1002752 (2012)

    Article  ADS  Google Scholar 

  • Hogeweg, P., Takeuchi, N.: Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig. Life Evol. Biosph. 33(4–5), 375–403 (2003)

    Article  ADS  Google Scholar 

  • IllergĂĽrd, K., Ardell, D.H., Elofsson, A.: Structure is three to ten times more conserved than sequence: a study of structural response in protein cores. Proteins. 77(3), 499–508 (2009)

    Article  Google Scholar 

  • Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., Miyata, T.: Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA. 86(23), 9355–9359 (1989)

    Article  ADS  Google Scholar 

  • Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA. 96(7), 3801–3806 (1999)

    Article  ADS  Google Scholar 

  • Jeffares, D.C., Poole, A.M., Penny, D.: Relics from the RNA world. J. Mol. Evol. 46(1), 18–36 (1998)

    Article  ADS  Google Scholar 

  • JĂŠkely, G.: Did the last common ancestor have a biological membrane? Biol. Direct. 1, 35 (2006)

    Article  Google Scholar 

  • Jensen, R.A.: Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976)

    Article  Google Scholar 

  • Kim, K.M., Caetano-AnollĂŠs, G.: Emergence and evolution of modern molecular functions inferred from phylogenomic analysis of ontological data. Mol. Biol. Evol. 27(7), 1710–1733 (2010)

    Article  Google Scholar 

  • King, T.H., Liu, B., McCully, R.R., Fournier, M.J.: Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell. 11(2), 425–435 (2003)

    Article  Google Scholar 

  • Koonin, E.V.: Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1(2), 127 (2003)

    Article  MathSciNet  Google Scholar 

  • Koonin, E.V., Martin, W.: On the origin of genomes and cells within inorganic compartments. Trends Genet. 21(12), 647–654 (2005)

    Article  Google Scholar 

  • Koonin, E.V., Mushegian, A.R., Bork, P.: Non-orthologous gene displacement. Trends Genet. 12(9), 334–336 (1996)

    Article  Google Scholar 

  • Koumandou, V.L., Wickstead, B., Ginger, M.L., van der Giezen, M., Dacks, J.B., Field, M.C.: Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48(4), 373–396 (2013)

    Article  Google Scholar 

  • Kyrpides, N., Overbeek, R., Ouzounis, C.: Universal protein families and the functional content of the last universal common ancestor. J. Mol. Evol. 49(4), 413–423 (1999)

    Article  ADS  Google Scholar 

  • Lafontaine, D.L., Tollervey, D.: Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23(10), 383–388 (1998)

    Article  Google Scholar 

  • Lapierre, P., Gogarten, J.P.: Estimating the size of the bacterial pan-genome. Trends Genet. 25(3), 107–110 (2009)

    Article  Google Scholar 

  • Lawrence, J.G., Roth, J.R.: Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 143(4), 1843–1860 (1996)

    Article  Google Scholar 

  • Leipe, D.D., Aravind, L., Koonin, E.V.: Did DNA replication evolve twice independently? Nucleic Acids Res. 27(17), 3389–3401 (1999)

    Article  Google Scholar 

  • Lindgreen, S., Umu, S.U., Lai, A.S., Eldai, H., Liu, W., McGimpsey, S., et al.: Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling. PLoS Comput. Biol. 10(10), e1003907 (2014)

    Article  Google Scholar 

  • Lundin, D., Gribaldo, S., Torrents, E., SjĂśberg, B.M., Poole, A.M.: Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evol. Biol. 10, 383 (2010)

    Article  Google Scholar 

  • Lundin, D., Poole, A.M., SjĂśberg, B.M., Hogbom, M.: Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J. Biol. Chem. 287(24), 20565–20575 (2012)

    Article  Google Scholar 

  • Malik, A.J., Poole, A.M., Allison, J.R.: Structural phylogenetics with confidence. Mol. Biol. Evol. 37(9), 2711–2726 (2020)

    Article  Google Scholar 

  • Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P., Liebl, U.: An alternative flavin-dependent mechanism for thymidylate synthesis. Science. 297(5578), 105–107 (2002)

    Article  ADS  Google Scholar 

  • Neumann, N., Lundin, D., Poole, A.M.: Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One. 5(10), e13241 (2010)

    Article  ADS  Google Scholar 

  • O’Brien, P.J., Herschlag, D.: Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6(4), R91–R105 (1999)

    Article  Google Scholar 

  • Ofengand, J., Bakin, A.: Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266(2), 246–268 (1997)

    Article  Google Scholar 

  • Omer, A.D., Lowe, T.M., Russell, A.G., Ebhardt, H., Eddy, S.R., Dennis, P.P.: Homologs of small nucleolar RNAs in archaea. Science. 288(5465), 517–522 (2000)

    Article  ADS  Google Scholar 

  • Penny, D., Poole, A.: The nature of the last universal common ancestor. Curr. Opin. Genet. Dev. 9(6), 672–677 (1999)

    Article  Google Scholar 

  • Penny, D., Hoeppner, M.P., Poole, A.M., Jeffares, D.C.: An overview of the introns-first theory. J. Mol. Evol. 69(5), 527–540 (2009)

    Article  ADS  Google Scholar 

  • PeretĂł, J., LĂłpez-GarcĂ­a, P., Moreira, D.: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29(9), 469–477 (2004)

    Article  Google Scholar 

  • Poole, A.M.: Getting from an RNA world to modern cells just got a little easier. BioEssays. 28(2), 105–108 (2006)

    Article  Google Scholar 

  • Poole, A.M.: Horizontal gene transfer and the earliest stages of the evolution of life. Res. Microbiol. 160(7), 473–480 (2009)

    Article  Google Scholar 

  • Poole, A.M., Logan, D.T.: Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol. Biol. Evol. 22(6), 1444–1455 (2005)

    Article  Google Scholar 

  • Poole, A.M., Jeffares, D.C., Penny, D.: The path from the RNA world. J. Mol. Evol. 46(1), 1–17 (1998)

    Article  ADS  Google Scholar 

  • Poole, A., Penny, D., SjĂśberg, B.M.: Confounded cytosine! Tinkering and the evolution of DNA. Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001)

    Article  Google Scholar 

  • Poole, A.M., Phillips, M.J., Penny, D.: Prokaryote and eukaryote evolvability. Biosystems. 69(2–3), 163–185 (2003)

    Article  Google Scholar 

  • Poole, A.M., Lundin, D., RytkĂśnen, K.T.: The evolution of early cellular systems viewed through the lens of biological interactions. Front. Microbiol. 6, 1144 (2015)

    Article  Google Scholar 

  • Raymann, K., Brochier-Armanet, C., Gribaldo, S.: The two-domain tree of life is linked to a new root for the archaea. Proc. Natl. Acad. Sci. USA. 112(21), 6670–6675 (2015)

    Article  ADS  Google Scholar 

  • Rivera, M.C., Jain, R., Moore, J.E., Lake, J.A.: Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA. 95(11), 6239–6244 (1998)

    Article  ADS  Google Scholar 

  • Shimada, H., Yamagishi, A.: Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry. 50(19), 4114–4120 (2011)

    Article  Google Scholar 

  • Shutt, T.E., Gray, M.W.: Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22(2), 90–95 (2006)

    Article  Google Scholar 

  • Skophammer, R.G., Servin, J.A., Herbold, C.W., Lake, J.A.: Evidence for a gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24(8), 1761–1768 (2007)

    Article  Google Scholar 

  • Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat. Genet. 21(1), 108–110 (1999)

    Article  Google Scholar 

  • Soo, V.W., Hanson-Manful, P., Patrick, W.M.: Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA. 108(4), 1484–1489 (2011)

    Article  ADS  Google Scholar 

  • Spang, A., Saw, J.H., Jorgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., et al.: Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 521(7551), 173–179 (2015)

    Article  ADS  Google Scholar 

  • Stern, A., Mayrose, I., Penn, O., Shaul, S., Gophna, U., Pupko, T.: An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst. Biol. 59(2), 212–225 (2010)

    Article  Google Scholar 

  • SzathmĂĄry, E., Demeter, L.: Group selection of early replicators and the origin of life. J. Theor. Biol. 128(4), 463–486 (1987)

    Article  ADS  Google Scholar 

  • Vetsigian, K., Woese, C., Goldenfeld, N.: Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA. 103(28), 10696–10701 (2006)

    Article  ADS  Google Scholar 

  • Villanueva, L., von Meijenfeldt, F.A.B., Westbye, A.B., Yadav, S., Hopmans, E.C., Dutilh, B.E., et al.: Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15, 168–182 (2020)

    Article  Google Scholar 

  • Warner, J.R., McIntosh, K.B.: How common are extraribosomal functions of ribosomal proteins? Mol. Cell. 34(1), 3–11 (2009)

    Article  Google Scholar 

  • Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., et al.: The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1(9), 16116 (2016)

    Article  Google Scholar 

  • White 3rd., H.B.: Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7(2), 101–104 (1976)

    Article  ADS  Google Scholar 

  • Williams, T.A., Cox, C.J., Foster, P.G., Szollosi, G.J., Embley, T.M.: Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4(1), 138–147 (2020)

    Article  Google Scholar 

  • Woese, C.: The universal ancestor. Proc. Natl. Acad. Sci. USA. 95(12), 6854–6859 (1998)

    Article  ADS  Google Scholar 

  • Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA. 74(11), 5088–5090 (1977)

    Article  ADS  Google Scholar 

  • Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA. 87(12), 4576–4579 (1990)

    Article  ADS  Google Scholar 

  • Wool, I.G.: Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21(5), 164–165 (1996)

    Article  Google Scholar 

  • Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Backstrom, D., Juzokaite, L., Vancaester, E., et al.: Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 541(7637), 353–358 (2017)

    Article  ADS  Google Scholar 

  • Zintzaras, E., Santos, M., SzathmĂĄry, E.: “Living” under the challenge of information decay: the stochastic corrector model vs. hypercycles. J. Theor. Biol. 217(2), 167–181 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poole, A.M. (2021). Reconstructing the Last Universal Common Ancestor. In: Neubeck, A., McMahon, S. (eds) Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-81039-9_9

Download citation

Publish with us

Policies and ethics