Skip to main content

Higher-Order Interactions in Biology: The Curious Case of Epistasis

  • Chapter
  • First Online:
Higher-Order Systems

Abstract

As with other arenas of complex systems, the biological world is driven by interactions between actors, parcels, and forces of various kinds. Higher-order interactions between these elements defines the complexity underlying many biological systems, from species interactions, the microbiota, to biomechanics and others. Here we explore higher-order interactions through a discussion of epistasis, a cutting-edge concept in population and evolutionary genetics. We examine the concept’s history and controversies, measure higher-order epistasis operating in a gene encoding an enzyme, and discuss the implications of higher-order interactions for contemporary conversations surrounding genetic modification and other technical challenges that require a more refined understanding of the relationship between genotype and phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. May, Will a large complex system be stable? Nature 238, 413–414 (1972)

    Article  ADS  Google Scholar 

  2. N.D. Martinez, R.J. Williams, J.A. Dunne, M. Pascual, Diversity, complexity, and persistence in large model ecosystems,in Ecological Networks: Linking Structure to Dynamics in Food Webs (2006), pp. 163–185

    Google Scholar 

  3. U. Dieckmann, R. Law, The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996)

    Article  MathSciNet  Google Scholar 

  4. M.M. Mayfield, D.B. Stouffer, Higher-order interactions capture unexplained complexity in diverse communities. Nature Ecol. Evol. 1, 1–7 (2017)

    Article  Google Scholar 

  5. J.M. Levine, J. Bascompte, P.B. Adler, S. Allesina, Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017)

    Article  ADS  Google Scholar 

  6. A.D. Letten, D.B. Stouffer, The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol. Lett. 22, 423–436 (2019)

    Article  Google Scholar 

  7. E.L. Preisser, D.I. Bolnick, M.F. Benard, Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005)

    Article  Google Scholar 

  8. M. Pascual, J.A. Dunne, J.A. Dunne, Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford University Press, 2006)

    Google Scholar 

  9. H. Mickalide, S. Kuehn, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533 (2019)

    Article  Google Scholar 

  10. R.C. Cobb, R.K. Meentemeyer, D.M. Rizzo, Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology 91, 327–333 (2010)

    Article  Google Scholar 

  11. A. Sanchez-Gorostiaga, D. Bajić, M.L. Osborne, J.F. Poyatos, A. Sanchez, High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019)

    Google Scholar 

  12. A.L. Gould, V. Zhang, L. Lamberti, E.W. Jones, B. Obadia, N. Korasidis, A. Gavryushkin, J.M. Carlson, N. Beerenwinkel, W.B. Ludington, Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018)

    Google Scholar 

  13. Y. Senay, G. John, S.A. Knutie, C.B. Ogbunugafor, Deconstructing higher-order interactions in the microbiota: a theoretical examination, BioRxiv (2019) 647156

    Google Scholar 

  14. E. Tekin, C. White, T.M. Kang, N. Singh, M. Cruz-Loya, R. Damoiseaux, V.M. Savage, P.J. Yeh, Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst. Biol. Appl. 4, 1–10 (2018)

    Article  Google Scholar 

  15. E. Tekin, P.J. Yeh, V.M. Savage, General form for interaction measures and framework for deriving higher-order emergent effects. Front. Ecol. Evol. 6, 166 (2018)

    Article  Google Scholar 

  16. E. Tekin, V.M. Savage, P.J. Yeh, Measuring higher-order drug interactions: a review of recent approaches. Curr. Opinion Syst. Biol. 4, 16–23 (2017)

    Article  Google Scholar 

  17. K.M. Evans, O. Larouche, S.-J. Watson, S. Farina, M.L. Habegger, M. Friedman, Integration drives rapid phenotypic evolution in flatfishes. Proc. Natl. Acad. Sci. 118 (2021)

    Google Scholar 

  18. D.L. Des Marais, R.F. Guerrero, J.R. Lasky, S.V. Scarpino, Topological features of a gene co-expression network predict patterns of natural diversity in environmental response, Proc. Royal Soc. B: Biol. Sci. 284, 20170914 (2017)

    Google Scholar 

  19. W. Bateson, E.R. Saunders, Reports to the Evolution Committee of the Royal Society: ReportsI-V, 1902–09, Royal Society (1910)

    Google Scholar 

  20. W. Weinberg, Weitere Beitrage zur Theorie der Vererbung. Arch. Rass. Ges. Biol. 7, 35–49 (1910)

    Google Scholar 

  21. W. Bateson, Mendel’s Principles of Heredity Cambridge University Press, März 1909; 2nd Impr. 3 (1909) 1913

    Google Scholar 

  22. M.L. Richmond, Women in the early history of genetics: William Bateson and the Newnham College Mendelians, 1900–1910. Isis 92, 55–90 (2001)

    Article  Google Scholar 

  23. M. Wheldale, The inheritance of flower colour in Antirrhinum majus. Proc. Royal Soc. Londn. Ser. B, Containing Papers of a Biological Character 79, 288–305 (1907)

    Google Scholar 

  24. P.C. Phillips, The language of gene interaction. Genetics 149, 1167–1171 (1998)

    Article  Google Scholar 

  25. W.B. Provine, The Origins of Theoretical Population Genetics (University of Chicago Press, 2020)

    Google Scholar 

  26. R.A. Fisher, 009: The Correlation Between Relatives on the Supposition of Mendelian Inheritance (1918)

    Google Scholar 

  27. U. Wolf, Identical mutations and phenotypic variation. Hum. Genet. 100, 305–321 (1997)

    Article  Google Scholar 

  28. J.B. Wolf, E.D. Brodie, M.J. Wade, Epistasis and the Evolutionary Process (Oxford University Press, 2000)

    Google Scholar 

  29. D. Posthuma, A.L. Beem, E.J. De Geus, G.C.M. Van Baal, J.B. Von Hjelmborg, I. Iachine, D.I. Boomsma, Theory and practice in quantitative genetics. Twin Res. Human Genet. 6, 361–376 (2003)

    Article  Google Scholar 

  30. S.B. Carroll, Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008)

    Article  Google Scholar 

  31. H.E. Hoekstra, J.A. Coyne, The locus of evolution: evo devo and the genetics of adaptation. Evolution: Int. J. Organic Evol. 61, 995–1016 (2007)

    Google Scholar 

  32. B.C. Daniels, H. Kim, D. Moore, S. Zhou, H.B. Smith, B. Karas, S.A. Kauffman, S.I. Walker, Criticality distinguishes the ensemble of biological regulatory networks. Phys. Rev. Lett. 121, 138102 (2018)

    Google Scholar 

  33. N. Barkai, S. Leibler, Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    Article  ADS  Google Scholar 

  34. R. Cheong, A. Rhee, C.J. Wang, I. Nemenman, A. Levchenko, Information transduction capacity of noisy biochemical signaling networks. Science 334, 354–358 (2011)

    Article  ADS  Google Scholar 

  35. R.E. Lenski, J.E. Barrick, C. Ofria, S. Levin, Balancing robustness and evolvability, PLoS Biol. 4, e428 (2006)

    Google Scholar 

  36. A. Wagner, D.A. Fell, The small world inside large metabolic networks. Proc. Royal Soc. Londn. Ser. B: Biol. Sci. 268, 1803–1810 (2001)

    Google Scholar 

  37. S.N. Dorogovtsev, J.F. Mendes, Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)

    Article  ADS  Google Scholar 

  38. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise, Phys. Rev. Lett. 59, 381–384 (1987). https://doi.org/10.1103/PhysRevLett.59.381

  39. R.A. Fisher, The Genetical Theory of Natural Selection: A Complete Variorum Edition (OUP Oxford, 1930)

    Google Scholar 

  40. R.T. Hietpas, C. Bank, J.D. Jensen, D.N. Bolon, Shifting fitness landscapes in response to altered environments. Evolution 67, 3512–3522 (2013)

    Article  Google Scholar 

  41. J.B.S. Haldane, The cost of natural selection. J. Genet. 55, 511 (1957)

    Article  Google Scholar 

  42. E.A. Boyle, Y.I. Li, J.K. Pritchard, An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017)

    Article  Google Scholar 

  43. T.B. Sackton, D.L. Hartl, Genotypic Context and epistasis in individuals and populations. Cell 166, 279–287 (2016). https://doi.org/10.1016/j.cell.2016.06.047

    Article  Google Scholar 

  44. D.M. Weinreich, Y. Lan, C.S. Wylie, R.B. Heckendorn, Should evolutionary geneticists worry about higher-order epistasis? Curr. Opin. Genet. Dev. 23, 700–707 (2013). https://doi.org/10.1016/j.gde.2013.10.007

    Article  Google Scholar 

  45. Z.R. Sailer, M.J. Harms, Uninterpretable Interactions: Epistasis as Uncertainty. BioRxiv 378489 (2018)

    Google Scholar 

  46. Z.R. Sailer, M.J. Harms, Detecting high-order epistasis in nonlinear genotype-phenotype maps. Genetics 205, 1079–1088 (2017)

    Article  Google Scholar 

  47. J. Otwinowski, J.B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis. PNAS 111, E2301–E2309 (2014). https://doi.org/10.1073/pnas.1400849111

    Article  ADS  Google Scholar 

  48. J. Otwinowski, D.M. McCandlish, J.B. Plotkin, Inferring the shape of global epistasis. PNAS 115, E7550–E7558 (2018). https://doi.org/10.1073/pnas.1804015115

    Article  Google Scholar 

  49. K. Crona, Rank orders and signed interactions in evolutionary biology. Elife. 9, e51004 (2020)

    Google Scholar 

  50. L. Crawford, P. Zeng, S. Mukherjee, X. Zhou, Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 13, e1006869 (2017)

    Google Scholar 

  51. Y. Jiang, J.C. Reif, Modeling epistasis in genomic selection. Genetics 201, 759–768 (2015)

    Article  Google Scholar 

  52. P. Demetci, W. Cheng, G. Darnell, X. Zhou, S. Ramachandran, L. Crawford, Multi-scale Inference of Genetic Trait Architecture using Biologically Annotated Neural Networks, BioRxiv 2020–07 (2021)

    Google Scholar 

  53. J.A.G.M. de Visser, J. Krug, Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014). https://doi.org/10.1038/nrg3744

    Article  Google Scholar 

  54. F.J. Poelwijk, D.J. Kiviet, D.M. Weinreich, S.J. Tans, Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007). https://doi.org/10.1038/nature05451

    Article  ADS  Google Scholar 

  55. J.V. Rodrigues, S. Bershtein, A. Li, E.R. Lozovsky, D.L. Hartl, E.I. Shakhnovich, Biophysical principles predict fitness landscapes of drug resistance. Proc. Natl. Acad. Sci. U.S.A. 113, E1470-1478 (2016). https://doi.org/10.1073/pnas.1601441113

    Article  ADS  Google Scholar 

  56. R.F. Guerrero, S.V. Scarpino, J.V. Rodrigues, D.L. Hartl, C.B. Ogbunugafor, Proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics 212, 565–575 (2019). https://doi.org/10.1534/genetics.119.302138

    Article  Google Scholar 

  57. S. Gottesman, S. Wickner, M.R. Maurizi, Protein quality control: triage by chaperones and proteases. Genes Dev. 11, 815–823 (1997)

    Article  Google Scholar 

  58. F.J. Poelwijk, V. Krishna, R. Ranganathan, The context-dependence of mutations: a linkage of formalisms. PLoS Comput. Biol. 12, e1004771 (2016)

    Google Scholar 

  59. D.M. Weinreich, Y. Lan, J. Jaffe, R.B. Heckendorn, The influence of higher-order epistasis on biological fitness landscape topography. J. Stat. Phys. 172, 208–225 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  60. E.R. Lozovsky, R.F. Daniels, G.D. Heffernan, D.P. Jacobus, D.L. Hartl, Relevance of higher-order epistasis in drug resistance. Mol. Biol. Evol. 38, 142–151 (2021). https://doi.org/10.1093/molbev/msaa196

    Article  Google Scholar 

  61. V.A. Meszaros, M.D. Miller-Dickson, C.B. Ogbunugafor, Lexical Landscapes as large in silico data for examining advanced properties of fitness landscapes. PLoS ONE 14, e0220891 (2019). https://doi.org/10.1371/journal.pone.0220891

    Article  Google Scholar 

  62. C.B. Ogbunugafor, The mutation effect reaction norm (mu‐rn) highlights environmentally dependent mutation effects and epistatic interactions. Evolution (2022). https://doi.org/10.1111/evo.14428

  63. S.K. Remold, R.E. Lenski, Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat. Genet. 36, 423 (2004)

    Article  Google Scholar 

  64. K.M. Flynn, T.F. Cooper, F.B. Moore, V.S. Cooper, The environment affects epistatic interactions to alter the topology of an empirical fitness landscape. PLoS Genet 9, e1003426 (2013)

    Google Scholar 

  65. A.L. Firth, T. Menon, G.S. Parker, S.J. Qualls, B.M. Lewis, E. Ke, C.T. Dargitz, R. Wright, A. Khanna, F.H. Gage, I.M. Verma, Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 12, 1385–1390 (2015). https://doi.org/10.1016/j.celrep.2015.07.062

    Article  Google Scholar 

  66. C. Long, L. Amoasii, A.A. Mireault, J.R. McAnally, H. Li, E. Sanchez-Ortiz, S. Bhattacharyya, J.M. Shelton, R. Bassel-Duby, E.N. Olson, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016). https://doi.org/10.1126/science.aad5725

    Article  ADS  Google Scholar 

  67. B. Maher, Personal genomes: the case of the missing heritability. Nature 456, 18–21 (2008). https://doi.org/10.1038/456018a

    Article  Google Scholar 

  68. T.A. Manolio, F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff, D.J. Hunter, M.I. McCarthy, E.M. Ramos, L.R. Cardon, A. Chakravarti, J.H. Cho, A.E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C.N. Rotimi, M. Slatkin, D. Valle, A.S. Whittemore, M. Boehnke, A.G. Clark, E.E. Eichler, G. Gibson, J.L. Haines, T.F.C. Mackay, S.A. McCarroll, P.M. Visscher, Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009). https://doi.org/10.1038/nature08494

    Article  ADS  Google Scholar 

  69. W. Huang, T.F.C. Mackay, The genetic architecture of quantitative traits cannot be inferred from variance component analysis. PLoS Genet. 12, e1006421 (2016). https://doi.org/10.1371/journal.pgen.1006421

  70. J.R. Stinchcombe, H.E. Hoekstra, Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb). 100, 158–170 (2008). https://doi.org/10.1038/sj.hdy.6800937

    Article  Google Scholar 

  71. A. Mäki-Tanila, W.G. Hill, Influence of gene interaction on complex trait variation with multilocus models. Genetics 198, 355–367 (2014). https://doi.org/10.1534/genetics.114.165282

    Article  Google Scholar 

  72. L. Hébert-Dufresne, S.V. Scarpino, J.-G. Young, Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement. Nat Phys. 16, 426–431 (2020). https://doi.org/10.1038/s41567-020-0791-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Brandon Ogbunugafor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brandon Ogbunugafor, C., Scarpino, S.V. (2022). Higher-Order Interactions in Biology: The Curious Case of Epistasis. In: Battiston, F., Petri, G. (eds) Higher-Order Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-91374-8_18

Download citation

Publish with us

Policies and ethics