Skip to main content

Expanding the Positioning Area for Acoustic Localization Using COTS Mobile Devices

  • Conference paper
  • First Online:
Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous 2021)

Abstract

In this paper, we propose a novel acoustic localization system using commercial off-the-shelf (COTS) mobile devices. Acoustic-based systems have advantages in terms of accuracy and cost. However, the measurable positioning area is limited because of the signal attenuation and the poor performance of microphones embedded in COTS mobile devices. Our system leverages a transmission scheme that combines time-division multiple-access (TDMA) and frequency-division multiple-access (FDMA) techniques to address the limitation. In the proposed approach, each speaker transmits different band chirps in a predefined sequence to mitigate multiple-access interference. A COTS device receives modulated signals via a built-in microphone. We exploit the received signals and estimate the position by calculating time difference of arrival (TDoA). We were able to reduce the error to a 90th-percentile error of 46.26 cm at a measurement point that could not be estimated by FDMA-based positioning. The experiment results show that our system is more accurate and has a larger area of positioning capability compared with FDMA-based positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akiyama, T., Sugimoto, M., Hashizume, H.: Time-of-arrival-based indoor smartphone localization using light-synchronized acoustic waves. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100(9), 2001–2012 (2017)

    Article  Google Scholar 

  2. Bahl, P., Padmanabhan, V.N.: Radar: an in-building RF-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 775–784. IEEE (2000)

    Google Scholar 

  3. Cai, C., Zheng, R., Li, J., Zhu, L., Pu, H., Hu, M.: Asynchronous acoustic localization and tracking for mobile targets. IEEE Internet Things J. 7(2), 830–845 (2019)

    Article  Google Scholar 

  4. Carlyn, M., et al.: Effects of age, season, gender and urban-rural status on time-activity: Canadian human activity pattern survey 2 (chaps 2). Int. J. Environ. Res. Public Health 2(11), 2108–2124 (2014)

    Google Scholar 

  5. Chen, X., Chen, Y., Cao, S., Zhang, L., Zhang, X., Chen, X.: Acoustic indoor localization system integrating TDMA+FDMA transmission scheme and positioning correction technique. Sensors 19(10), 2353 (2019)

    Article  Google Scholar 

  6. Erdélyi, V., Le, T.K., Bhattacharjee, B., Druschel, P., Ono, N.: Sonoloc: scalable positioning of commodity mobile devices. In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, pp. 136–149 (2018)

    Google Scholar 

  7. Faragher, R., Harle, R.: Location fingerprinting with Bluetooth low energy beacons. IEEE J. Sel. Areas Commun. 33(11), 2418–2428 (2015)

    Article  Google Scholar 

  8. Fukuju, Y., Minami, M., Morikawa, H., Aoyama, T.: DOLPHIN: an autonomous indoor positioning system in ubiquitous computing environment. In: Proceedings IEEE Workshop on Software Technologies for Future Embedded Systems, WSTFES 2003, pp. 53–56. IEEE (2003)

    Google Scholar 

  9. Ge, L., Zhang, Q., Zhang, J., Huang, Q.: Acoustic strength-based motion tracking. Proce. ACM Interact. Mob. Wearable Ubiquit. Technol. 4(4), 1–19 (2020)

    Article  Google Scholar 

  10. Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anatomy of a context-aware application. Wireless Netw. 8(2), 187–197 (2002)

    Article  Google Scholar 

  11. Höflinger, F., et al.: Acoustic self-calibrating system for indoor smartphone tracking (assist). In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9. IEEE (2012)

    Google Scholar 

  12. Kang, W., Han, Y.: SmartPDR: smartphone-based pedestrian dead reckoning for indoor localization. IEEE Sens. J. 15(5), 2906–2916 (2014)

    Article  Google Scholar 

  13. Khyam, M.O., et al.: Simultaneous excitation systems for ultrasonic indoor positioning. IEEE Sens. J. 20(22), 13716–13725 (2020)

    Article  Google Scholar 

  14. Krishnan, S., Sharma, P., Guoping, Z., Woon, O.H.: A UWB based localization system for indoor robot navigation. In: 2007 IEEE International Conference on Ultra-Wideband, pp. 77–82. IEEE (2007)

    Google Scholar 

  15. Lanjudkar, P.: Indoor positioning and indoor navigation (IPIN) Market accessed May 23 2021 (2018). https://www.alliedmarketresearch.com/indoor-positioning-and-indoor-navigation-ipin-market

  16. Lazik, P., Rajagopal, N., Shih, O., Sinopoli, B., Rowe, A.: ALPS: a Bluetooth and ultrasound platform for mapping and localization. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pp. 73–84 (2015)

    Google Scholar 

  17. Lazik, P., Rowe, A.: Indoor pseudo-ranging of mobile devices using ultrasonic chirps. In: SenSys 2012 - Proceedings of the 10th ACM Conference on Embedded Networked Sensor Systems, pp. 391–392 (2012)

    Google Scholar 

  18. Liu, T., Niu, X., Kuang, J., Cao, S., Zhang, L., Chen, X.: Doppler shift mitigation in acoustic positioning based on pedestrian dead reckoning for smartphone. IEEE Trans. Instrum. Meas. 70, 1–11 (2020)

    Google Scholar 

  19. Lyons, R.G.: Understanding Digital Signal Processing, 3rd edn. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  20. Murakami, H., Suzaki, T., Nakamura, M., Hashizume, H., Sugimoto, M.: Five degrees-of-freedom pose-estimation method for smartphones using a single acoustic anchor. IEEE Sens. J. 21, 8030–8044 (2020)

    Google Scholar 

  21. Nakamura, M., Hashizume, H., Sugimoto, M.: Simultaneous localization and communication methods using short-time and narrow-band acoustic signals. Sensor Device Technologies and Applications SENSORDEVICES 2020 (2020)

    Google Scholar 

  22. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 32–43 (2000)

    Google Scholar 

  23. Priyantha, N.B., Miu, A.K., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2001)

    Google Scholar 

  24. Xu, S., Chen, R., Yu, Y., Guo, G., Huang, L.: Locating smartphones indoors using built-in sensors and Wi-Fi ranging with an enhanced particle filter. IEEE Access 7, 95140–95153 (2019)

    Article  Google Scholar 

  25. Zafari, F., Gkelias, A., Leung, K.K.: A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutorials 21(3), 2568–2599 (2019)

    Article  Google Scholar 

  26. Zafari, F., Papapanagiotou, I., Christidis, K.: Microlocation for internet-of-things-equipped smart buildings. IEEE Internet Things J. 3(1), 96–112 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by JSPS Kakenhi Grant Numbers 19H04222 and 20K21781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Suzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suzaki, T., Nakamura, M., Murakami, H., Watanabe, H., Hashizume, H., Sugimoto, M. (2022). Expanding the Positioning Area for Acoustic Localization Using COTS Mobile Devices. In: Hara, T., Yamaguchi, H. (eds) Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-94822-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94822-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94821-4

  • Online ISBN: 978-3-030-94822-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics