Skip to main content

Estimating Change Intensity and Duration in Human Activity Recognition Using Martingales

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

The subject of physical activity is becoming prominent in the healthcare system for the improvement and monitoring of movement disabilities. Existing algorithms are effective in detecting changes in data streams but most of these approaches are not focused on measuring the change intensity and duration. In this paper, we improve on the geometric moving average martingale method by optimising the parameters in the weighted average using a genetic algorithm. The proposed approach enables us to estimate the intensity and duration of transitions that happen in human activity recognition scenarios. Results show that the proposed method makes some improvement over previous martingale techniques.

Supported by Ulster University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akosa, J.: Predictive accuracy: a misleading performance measure for highly imbalanced data. In: Proceedings of the SAS Global Forum, vol. 12 (2017)

    Google Scholar 

  2. Brawley, L.R., Rejeski, W.J., King, A.C.: Promoting physical activity for older adults: the challenges for changing behavior. Am. J. Prev. Med. 25(3), 172–183 (2003)

    Article  Google Scholar 

  3. Etumusei, J., Martinez Carracedo, J., McClean, S.: Novel martingale approaches for change point detection. In: Abraham, A., Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A. (eds.) ISDA 2020. AISC, vol. 1351, pp. 457–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71187-0_42

    Chapter  Google Scholar 

  4. Ho, S.S., Wechsler, H.: A martingale framework for detecting changes in data streams by testing exchangeability. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2113–2127 (2010)

    Article  Google Scholar 

  5. Hosseini, S.S., Noorossana, R.: Performance evaluation of ewma and cusum control charts to detect anomalies in social networks using average and standard deviation of degree measures. Qual. Reliab. Eng. Int. 34(4), 477–500 (2018)

    Article  Google Scholar 

  6. Isaac, E.: Test of hypothesis-concise formula summary

    Google Scholar 

  7. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  8. Khan, N., McClean, S., Zhang, S., Nugent, C.: Optimal parameter exploration for online change-point detection in activity monitoring using genetic algorithms. Sensors 16(11), 1784 (2016)

    Article  Google Scholar 

  9. Kong, X., Bi, Y., Glass, D.H.: Detecting seismic anomalies in outgoing long-wave radiation data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 8(2), 649–660 (2014)

    Article  Google Scholar 

  10. Kong, X.Z., Bi, Y.X., Glass, D.H.: A Geometric Moving Average Martingale method for detecting changes in data streams. In: Bramer, M., Petridis, M. (eds.) SGAI 2012, pp. 79–92. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4739-8_6

    Chapter  Google Scholar 

  11. Lampinen, P., Heikkinen, R.L., Ruoppila, I.: Changes in intensity of physical exercise as predictors of depressive symptoms among older adults: an eight-year follow-up. Prev. Med. 30(5), 371–380 (2000)

    Article  Google Scholar 

  12. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

    Article  Google Scholar 

  13. Lu, Y., Cheung, Y.M., Tang, Y.Y.: Goboost: G-mean optimized boosting framework for class imbalance learning. In: 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 3149–3154. IEEE (2016)

    Google Scholar 

  14. Miles, L.: Physical activity and health. Nutr. Bull. 32(4), 314–363 (2007)

    Article  Google Scholar 

  15. Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks. SCI, vol. 780, pp. 43–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1_4

    Chapter  MATH  Google Scholar 

  16. Nau, R.: Arima models for time series forecasting (2014)

    Google Scholar 

  17. Nguyen, G.H., Bouzerdoum, A., Phung, S.L.: Learning pattern classification tasks with imbalanced data sets. Pattern Recogn. 36, 193–208 (2009)

    Google Scholar 

  18. Roy, B.: The optimisation problem formulation: criticism and overstepping. J. Oper. Res. Soc. 32(6), 427–436 (1981)

    Article  MathSciNet  Google Scholar 

  19. Stokes, M.: Physical management in neurological rehabilitation. Elsevier Health Sciences (2004)

    Google Scholar 

  20. Sugawara, J., Otsuki, T., Tanabe, T., Hayashi, K., Maeda, S., Matsuda, M.: Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am. J. Hypertens. 19(10), 1032–1036 (2006)

    Article  Google Scholar 

  21. Wang, L., Gu, T., Tao, X., Lu, J.: Sensor-based human activity recognition in a multi-user scenario. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 78–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05408-2_10

    Chapter  Google Scholar 

  22. Xuan, X., Lo, D., Xia, X., Tian, Y.: Evaluating defect prediction approaches using a massive set of metrics: an empirical study. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 1644–1647 (2015)

    Google Scholar 

  23. Zhang, S., Galway, L., McClean, S., Scotney, B., Finlay, D., Nugent, C.D.: Deriving relationships between physiological change and activities of daily living using wearable sensors. In: Par, G., Morrow, P. (eds.) S-CUBE 2010. LNICST, vol. 57, pp. 235–250. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23583-2_17

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by a University of Ulster Vice-Chancellor’s Research Studentship. The authors would like to thank anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Etumusei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Etumusei, J., Carracedo, J.M., McClean, S. (2022). Estimating Change Intensity and Duration in Human Activity Recognition Using Martingales. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95467-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95466-6

  • Online ISBN: 978-3-030-95467-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics