Skip to main content

Ophidian Biotremology

  • Chapter
  • First Online:
Biotremology: Physiology, Ecology, and Evolution

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

  • 621 Accesses

Abstract

Snakes evince the ability to detect substrate-borne mechanical waves (through a variety of substrates) and surface mechanical waves; exactly how these specialized vertebrates accomplish this remains largely unknown. Behavioral and neurophysiological studies in snakes have struggled to differentiate the modalities, mechanisms, and central pathways for the airborne and ground-borne detection of mechanical waves. The snake cochlea is the best-known component of this sensory system; previous studies have shown that the snake cochlea has a rather consistent frequency response range, some intriguing differences in sensitivity, and a mechanical coupling to the middle ear ossicle. How pressure waves reach the middle ear ossicle/cochlea is not clear; whether or not there are pathways (perhaps utilizing the lung) to the cochlea that bypass the ossicle, and the relative role of the snake’s vestibular system in the detection of mechanical waves (if any), remain a mystery. The pathway by which neural signals transduced in the cochlea reach higher brain centers has not been determined in snakes. Perhaps most intriguing, we do not know how pressure stimuli encoded at the cochlea are integrated with stimuli encoded elsewhere on the snake’s body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED (1938) Effect of sound on reptiles. J Physiol 92:9–11

    Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847

    Article  CAS  PubMed  Google Scholar 

  • Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40

    Article  CAS  PubMed  Google Scholar 

  • Baird IL (1970) The anatomy of the reptilian ear. In: Gans C, Parsons TS (eds) Biology of the Reptilia, vol 2. Academic Press, London, pp 193–275

    Google Scholar 

  • Barrio Amoros C, Manrique R (2008) Observations on the natural history of the green anaconda (Eunectes murinus Linnaeus, 1758) in the Venezuelan Llanos: an ecotourism perspective. Iguana 15:93–101

    Google Scholar 

  • Bass AH, Rose GJ, Pritz MB (2005) Auditory midbrain of fish, amphibians, and reptiles: model systems for understanding auditory function. In: Winer J, Schreiner C (eds) The inferior colliculus. Springer, New York, pp 459–492

    Chapter  Google Scholar 

  • Beaupre SJ, Roberts KG, Senter P, Hartmann PA, Al E (2001) Agkistrodon contortrix contortrix chemotaxis, aboreality, and diet. Herpetol Rev 32:44

    Google Scholar 

  • Blaxter JHS (1977) The effect of swimbladder deflation on pressure sensitivity in the saithe Pollachius virens. J Mar Biol Assoc UK 57:1057–1064

    Article  Google Scholar 

  • Bruce LL, Butler AB (1984) Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J Comp Neurol 229:602–615

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MS (2014) Interactions between airborne sound and substrate vibration in animal communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 65–92

    Google Scholar 

  • Capshaw G, Soares D (2016) Hearing in plethodontid salamanders: a review. Copeia 104:157–164

    Article  Google Scholar 

  • Carr CE, Christensen-Dalsgaard J, Edds-Walton P, Köppl C, Tang Y, Young BA, Willis KL (2017) Evolutionary trends in hearing in nonmammalian vertebrates. In: Kaas J (ed) Evolution of nervous systems. Elsevier, New York, pp 291–308

    Chapter  Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (family Pleuronectidae). Comp Biochem Physiol A 47:371–385

    Article  CAS  PubMed  Google Scholar 

  • Chapuis L, Kerr CC, Collin SP, Hart NS, Sanders KL (2019) Underwater hearing in sea snakes (Hydrophiinae): first evidence of auditory evoked potential thresholds. J Exp Biol 222:jeb198184

    Article  PubMed  Google Scholar 

  • Christensen CB, Christensen-Dalsgaard J, Brandt C, Madsen PT (2012) Hearing with an atympanic ear: good vibration and poor sound-pressure detection in the royal python, Python regius. J Exp Biol 215:331–342

    Article  PubMed  Google Scholar 

  • Coss RG, Cavanaugh C, Brennan W (2019) Development of snake-directed antipredator behavior by wild white-faced capuchin monkeys: III. The signaling properties of alarm-call tonality. Am J Primatol. https://doi.org/10.1002/ajp.22950

  • Cress D, Lundien J, Flohr M (1980) Coupling of airborne sound into the earth: frequency dependence. J Acoust Soc Am 67:1502–1506

    Article  Google Scholar 

  • Crowe-Riddell JM, Williams R, Chapuis L, Sanders KL (2019) Ultrastructural evidence of a mechanosensory function of scale organs (sensilla) in sea snakes (Hydrophiinae). R Soc Open Sci 6. https://doi.org/10.1098/rsos.182022

  • Defina A, Kennedy M (1983) The cochlear nuclei in colubrid and boid snakes: a quantitative study. J Morphol 178:285–301

    Article  PubMed  Google Scholar 

  • Di-Poï N, Milinkovitch MC (2013) Crocodylians evolved scattered multi-sensory micro-organs. EvoDevo 4. https://doi.org/10.1186/2041-9139-4-19

  • Echteler SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551

    Article  CAS  PubMed  Google Scholar 

  • Fitch H (1960) Autecology of the copperhead. Univ Kansas Publ Mus Nat Hist 13:85–288

    Google Scholar 

  • Flower SS (1899) Notes on a second collection of reptiles made in the Malay peninsula and Siam, from November 1896 to September 1898, with a list of the species recorded from those countries. Proc Zool Soc Lond 67:600–697

    Article  Google Scholar 

  • Foster RE, Hall WC (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178:783–831

    Article  CAS  PubMed  Google Scholar 

  • Gadow H (1901) Amphibia and reptiles. MacMillan, New York

    Book  Google Scholar 

  • Gruters KG, Groh JM (2012) Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits 2012:1–39

    Google Scholar 

  • Hartline PH (1971a) Physiological basis for detection of sound and vibration in snakes. J Exp Biol 54:349–371

    Article  CAS  PubMed  Google Scholar 

  • Hartline PH (1971b) Mid-brain responses of the auditory and somatic vibration systems in snakes. J Exp Biol 54:373–390

    Article  CAS  PubMed  Google Scholar 

  • Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223

    Article  CAS  PubMed  Google Scholar 

  • Hill PSM (2009) How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:1355–1371

    Article  CAS  PubMed  Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191

    Article  CAS  PubMed  Google Scholar 

  • Holmes G (1902) On the comparative anatomy of the Nervus Acusticus. Trans R Irish Acad B 32:101–104

    Google Scholar 

  • Jackson MK (1977) Histology and distribution of cutaneous touch corpuscles in some leptotyphlopid and colubrid snakes (Reptilia, Serpentes). J Herpetol 11:7

    Article  Google Scholar 

  • Jain R, Shore S (2006) External inferior colliculus integrates trigeminal and acoustic information: unit responses to trigeminal nucleus and acoustic stimulation in the Guinea pig. Neurosci Lett 395:71–75

    Article  CAS  PubMed  Google Scholar 

  • Khachunts AS (1982) Electrophysiological characteristics of representation of auditory and somatosensory systems in the turtle midbrain. Neurophysiology 14:191–198

    Article  Google Scholar 

  • Kunzle H, Woodson W (1982) Mesodiencephalic and other target regions of ascending spinal projections in the turtle, Pseudemys scripta elegans. J Comp Neurol 212:349–364

    Article  CAS  PubMed  Google Scholar 

  • Lagesse LA, Ford NB (1996) Ontogenetic variation in the diet of the southern copperhead, Agkistrodon contortrix, in northeastern Texas. Texas J Sci 48:48–54

    Google Scholar 

  • Leake PA (1974) Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav Evol 10:170–196

    Article  CAS  PubMed  Google Scholar 

  • Leitch DB, Catania KC (2012) Structure, innervation and response properties of integumentary sensory organs in crocodilians. J Exp Biol 215:4217–4230

    Article  PubMed  PubMed Central  Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  • Miller MR (1968) The cochlear duct of snakes. Proc Calif Acad Sci 35:425–476

    Google Scholar 

  • Miller MR (1975) The cochlear nuclei of lizards. J Comp Neurol 159:375–406

    Article  CAS  PubMed  Google Scholar 

  • Miller MR (1978) Scanning electron microscope studies of the papilla basilaris of some turtles and snakes. Am J Anat 151:409–435

    Article  CAS  PubMed  Google Scholar 

  • Miller MR (1980) The cochlear nuclei of snakes. J Comp Neurol 192:717–736

    Article  CAS  PubMed  Google Scholar 

  • Modesto SP, Anderson JS (2004) The phylogenetic definition of reptilia. Syst Biol 53:815–821

    Article  PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, Donkelaar HJT (1995) Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis. J Comp Neurol 363:197–220

    Article  PubMed  Google Scholar 

  • Muñoz A, Muñoz M, González A, Ten Donkelaar HJ (1997) Spinal ascending pathways in amphibians: cells of origin and main targets. J Comp Neurol 378:205–228

    Article  PubMed  Google Scholar 

  • Narins PM, Losin N, O’Connell-Rodwell CE (2009) Seismic and vibrational signals in animals. In: Squire L (ed) Encyclopedia of neuroscience. Academic Press, Oxford, pp 545–549

    Chapter  Google Scholar 

  • Noble GK (1937) The sense organs involved in the courtship of Storeria, Thamnophis and other snakes. Bull Am Mus Nat Hist 73:673–725

    Google Scholar 

  • Palci A, Caldwell MW (2014) The upper cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and the crista circumfenestralis of snakes. J Morphol 275:1187–1200

    Article  PubMed  Google Scholar 

  • Povel D, Van Der Kooij J (1997) Scale sensillae of the file snake (Serpentes: Acrochordidae) and some other aquatic and burrowing snakes. Netherlands J Zool 47:443–456

    Google Scholar 

  • Pritz MB, Stritzel ME (1989) Reptilian somatosensory midbrain: identification based on input from the spinal cord and dorsal column nucleus. Brain Behav Evol 33:1–14

    Article  CAS  PubMed  Google Scholar 

  • Proske U (1969) Nerve endings in skin of the Australian black snake. Anat Rec 164:259–265

    Article  CAS  PubMed  Google Scholar 

  • Randall JA (2001) Evolution and function of drumming as communication in mammals. Am Zool 41:1143–1156

    Google Scholar 

  • Randall JA, Matocq MD (1997) Why do kangaroo rats (Dipodomys spectabilis) footdrum at snakes? Behav Ecol 8:404–413

    Article  Google Scholar 

  • Rieppel O (1980) The sound-transmitting apparatus in primitive snakes and its phylogenetic significance. Zoomorphology 96:45–62

    Article  Google Scholar 

  • Rieppel O, Zaher H (2001) The development of the skull in Acrochordus granulatus (Schneider) (Reptilia: Serpentes), with special consideration of the otico-occipital complex. J Morphol 249:252–266

    Article  CAS  PubMed  Google Scholar 

  • Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proc Natl Acad Sci USA 104:14372–14376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder DM (1985) The nucleus dorsalis myelencephali of snakes: relay nucleus between the spinal cord and the posterior colliculus (paratorus). Brain Res 336:359–362

    Article  CAS  PubMed  Google Scholar 

  • Senn DG (1969) The saurian and ophidian colliculi posteriores of the midbrain. Acta Anat 74:114–120

    Article  CAS  PubMed  Google Scholar 

  • Senter P, Harris SM, Kent DL (2014) Phylogeny of courtship and male-male combat behavior in snakes. PLoS One 9. https://doi.org/10.1371/journal.pone.0107528

  • Shetty S, Shine R (2002) The mating system of yellow-lipped sea kraits (Laticauda colubrina: Laticaudidae). Herpetologica 58:170–180

    Article  Google Scholar 

  • Smith MA (1943) The fauna of British India, Ceylon and Burma, including the whole of the Indo-Chinese sub-region. Reptilia and Amphibia, vol 3 - Serpentes. Taylor & Francis, London

    Google Scholar 

  • Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:1–7

    Article  Google Scholar 

  • Subach A, Scharf I, Ovadia O (2009) Foraging behavior and predation success of the sand viper (Cerastes vipera). Can J Zool 87:520–528

    Article  Google Scholar 

  • Swaisgood RR, Rowe MP, Owings DH (2003) Antipredator responses of California ground squirrels to rattlesnakes and rattling sounds: the roles of sex, reproductive parity, and offspring age in assessment and decision-making rules. Behav Ecol Sociobiol 55:22–31

    Article  Google Scholar 

  • Thompson GC, Masterton RB (1978) Brain stem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 41:1183–1202

    Article  CAS  PubMed  Google Scholar 

  • Underwood G (1967) A contribution to the classification of snakes. Trustees of the British Museum of Natural History, London

    Google Scholar 

  • Vincent SE, Shine R, Brown GP (2005) Does foraging mode influence sensory modalities for prey detection in male and female filesnakes, Acrochordus arafurae? Anim Behav 70:715–721

    Article  Google Scholar 

  • von During M, Miller MR (1979) Sensory nerve endings of the skin and deeper structures. In: Gans C (ed) Biology of the reptilia, vol 9. Academic Press, New York, pp 407–441

    Google Scholar 

  • Wall F (1921) Ophidia Taprobanica or the snakes of Ceylon. H.R. Cottle, Colombo

    Book  Google Scholar 

  • Westhoff G, Fry BG, Bleckmann H (2005) Sea snakes (Lapemis curtus) are sensitive to low-amplitude water motions. Zoology 108:195–200

    Article  PubMed  Google Scholar 

  • Weston JK (1936) The reptilian vestibular and cerebellar gray with fiber connections. J Comp Neurol 65:93–199

    Article  Google Scholar 

  • Wever EG (1978) The reptile ear. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wever EG, Vernon JA (1960) The problem of hearing in snakes. J Aud Res 1:77–83

    Google Scholar 

  • Whitford MD, Freymiller GA, Clark RW (2019) Managing predators: the influence of kangaroo rat antipredator displays on sidewinder rattlesnake hunting behavior. Ethology 125:450–456

    Article  Google Scholar 

  • Wild JM (1995) Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus. J Comp Neurol 358:465–486

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Kato T, Okada Y, Somiya H (2010) Somatosensory nucleus in the torus semicircularis of cyprinid teleosts. J Comp Neurol 518:2475–2502

    PubMed  Google Scholar 

  • Yan K, Tang YZ, Carr CE (2010) Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko. J Comp Neurol 518:3409–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young BA (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Q Rev Biol 78:303–325

    Article  PubMed  Google Scholar 

  • Young BA (2007) Response of the yellow anaconda (Eunectes notaeus) to aquatic acoustic stimuli. In: Henderson RW, Powell R (eds) Biology of boas and pythons. Eagle Mountain, Utah, pp 199–205

    Google Scholar 

  • Young BA, Morain M (2002) The use of ground-borne vibrations for prey localization in the Saharan sand vipers (Cerastes). J Exp Biol 205:661–665

    Article  PubMed  Google Scholar 

  • Young BA, Mathevon N, Tang Y (2013) Reptile auditory neuroethology: what do reptiles do with their hearing? In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer handbook of auditory research, vol 49. Springer, New York, pp 323–346

    Chapter  Google Scholar 

  • Zeng SJ, Li J, Zhang XW, Zuo MX (2007a) Distinction of neurochemistry between the cores and their shells of auditory nuclei in tetrapod species. Brain Behav Evol 70:1–20

    Article  PubMed  Google Scholar 

  • Zeng SJ, Xi C, Zhang XW, Zuo MX (2007b) Differences in neurogenesis differentiate between core and shell regions of auditory nuclei in the turtle (Pelodiscus sinensis): evolutionary implications. Brain Behav Evol 70:174–186

    Article  PubMed  Google Scholar 

  • Zeng SJ, Tian CP, Zhang XW, Zuo MX (2008) Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications. Brain Res 1206:44–60

    Article  CAS  PubMed  Google Scholar 

  • Zeng SJ, Lin YT, Tian CP, Song KJ, Zhang XW, Zuo MX (2009) Evolutionary significance of delayed neurogenesis in the core versus shell auditory areas of Mus musculus. J Comp Neurol 515:600–613

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Catherine Carr for her considerate guidance, and Peter Kondrashov for his continued support. D.H. was supported by NIDCD 000436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, D., Young, B.A. (2022). Ophidian Biotremology. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_14

Download citation

Publish with us

Policies and ethics