Skip to main content

Substrate-Borne Vibrational Noise in the Anthropocene: From Land to Sea

  • Chapter
  • First Online:
Biotremology: Physiology, Ecology, and Evolution

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

Abstract

Here we provide an overview of work related to anthropogenically produced substrate-borne vibrational noise. We review the marine and terrestrial vibrational noise literature base, focusing upon the species studied, the increasing research attention, and the findings of latest papers. We highlight the key sources of vibrational noise, how noise may be measured and mitigated (both by humans and by animal receivers), and how we can test for the potential impacts of noise sources. We present two case studies of previously untested species, the first relating to vibrational sensitivity of barnacles, and the second relating to activity patterns of the Madagascar hissing cockroach under vibrational noise. Currently it is difficult to draw firm conclusions on the effects of vibrational noise, given the few studies in both environments. However, effects seen to date include interference with signaling, pair formation and parental care, in addition to activity changes, and an increase of stress-related behaviors. Notably the aquatic research base lags behind the terrestrial, with the vibrational sensing capabilities of most benthic organisms largely unknown currently. We highlight vibrational noise as an area that requires more research attention both on the land and in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeyesinghe SM, Wathes CM, Nicol CJ, Randall JM (2001) The aversion of broiler chickens to concurrent vibrational and thermal stressors. Appl Anim Behav Sci 73(3):199–215

    Article  PubMed  Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25(3):180–189

    Article  PubMed  Google Scholar 

  • Barth FG (1980) Campaniform sensilla: another vibration receptor in the crab leg. Naturwissenschaften 67(4):201–202

    Article  Google Scholar 

  • Barth FG (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). Oecologia 2:194–201

    Article  Google Scholar 

  • Benhaïma D, Péanb S, Lucas G, Blanca N, Chatain B, Bégout M-L (2012) Early life behavioural differences in wild caught and domesticated sea bass (Dicentrarchus labrax). Appl Anim Behav Sci 141(1–2):79–90

    Article  Google Scholar 

  • Berghahn R, Wiese K, Lüdemann K (1995) Physical and physiological aspects of gear efficiency in North Sea brown shrimp fisheries. Helgoländer Meeresuntersuchungen 49(1–4):507–518

    Article  Google Scholar 

  • Branscomb ES, Rittschof D (1984) An investigation of low frequency sound waves as a means of inhibiting barnacle settlement. J Exp Mar Biol Ecol 79(2):149–154

    Article  Google Scholar 

  • Breithaupt T (2002) Sound perception in aquatic crustaceans. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 449–548

    Google Scholar 

  • Briese V, Fanghänel J, Gasow H (1984) Effect of pure sound and vibration on the embryonic development of the mouse. Zbl Gynakol 106(6):379–388

    CAS  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Bunkley JP, McClure CJW, Kawahara AY, Francis CD, Barber JR (2017) Anthropogenic noise changes arthropod abundances. Ecol Evol 7:2977–2985

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldwell MS, Johnston GR, McDaniel JG, Warkentin KM (2010a) Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Curr Biol 20(11):1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2010b) Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Anim Behav 79(2):255–260

    Article  Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11(2):147–153

    Article  Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc R Soc B 274(1613):1087–1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72(2):461–469

    Article  Google Scholar 

  • Chan A-H, Giraldo- Pérez P, Smith S, Blumstein DT (2010) Anthropogenic noise affects risk assessment and attention: the distracted prey hypothesis. Biol Lett 6:458–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua (L.). J Comp Physiol A 85:147–167

    Article  Google Scholar 

  • Choi CH, Scardino AJ, Dylejko G, Fletcher E, Juniper R (2013) The effect of vibration frequency and amplitude on biofouling deterrence. Biofouling 29(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Clark DC, Moore AJ (1995) Variation and repeatability of male agonistic hiss characteristics and their relationship to social rank in Gromphadorhina portentosa. Anim Behav 50(3):719–729

    Article  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334

    Article  Google Scholar 

  • Cocroft RB, Hamel J, Su Q, Gibson J (2014) Vibrational playback experiments: challenges and solutions. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 249–274

    Google Scholar 

  • Čokl A, Laumann RA, Žunič Kosi A, Blassioli-Moraes MC, Virant-Doberlet M, Borges M (2015) Interference of overlapping insect vibratory communication signals: an Eushistus heros model. PLoS One 10:e0130775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cornsweet TN (1962) The staircase-method in psychophysics. Am J Psychol 75:485–491

    Article  CAS  PubMed  Google Scholar 

  • Cragg SM, Nott JA (1977) The ultrastructure of the statocysts in the pediveliger larvae of Pecten maximus (L.) (Bivalvia). J Exp Mar Biol Ecol 27(1):23–36

    Article  Google Scholar 

  • Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11(12):1304–1315

    Article  PubMed  Google Scholar 

  • Crisp DJ, Southward AJ (1961) Different types of cirral activity of barnacles. Philos Trans R Soc Lond B 243:271–307

    Article  Google Scholar 

  • Dambach M (1989) Vibrational response. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell University Press, Ithaca, pp 178–197

    Google Scholar 

  • Davis AK, Schroeder H, Yeager I, Pearce J (2018) Effects of simulated highway noise on heart rates of larval monarch butterflies, Danaus plexippus: implications for roadside habitat suitability. Biol Lett 14:20180018

    Article  PubMed  PubMed Central  Google Scholar 

  • Day RD, McCauley RD, Fitzgibbon QP, Hartmann K, Semmens JM (2017) Exposure to seismic air gun signals causes physiological harm and alters behavior in the scallop Pecten fumatus. Proc Natl Acad Sci USA 114(40):E8537–E8546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day RD, McCauley RD, Fitzgibbon QP, Hartmann K, Semmens JM (2019) Seismic air guns damage rock lobster mechanosensory organs and impair righting reflex. Proc Roy Soc B Bio 286(1907):20191424

    Article  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2010) Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in Nezara viridula (L.). J Exp Biol 213:3213–3222

    Article  PubMed  Google Scholar 

  • de Groot M, Čokl A, Virant-Doberlet M (2011) Species identity cues: possibilities for errors during vibrational communication on plant stems. Behav Ecol 22(6):1209–1217

    Article  Google Scholar 

  • Dimmitt MA, Ruibal R (1980) Environmental correlates of emergence in spadefoot toads (Scaphiopus). J Herpetol 14(1):21–29

    Article  Google Scholar 

  • Duarte MHL, Caliari EP, Scarpelli MDA, Lobregat GO, Young RJ, Sousa-Lima RS (2019) Effects of mining truck traffic on cricket calling activity. J Acoust Soc Am 146:656–664

    Article  PubMed  Google Scholar 

  • Ducrotoy J-P, Elliott M (2008) The science and management of the North Sea and the Baltic Sea: natural history, present threats and future challenges. Mar Pollut Bull 57:8–21

    Article  CAS  PubMed  Google Scholar 

  • Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin Heidelberg, pp 215–247

    Google Scholar 

  • Ellers O (1995) Discrimination among wave-generated sounds by a swash-riding clam. Biol Bull 189(2):128–137

    Article  CAS  PubMed  Google Scholar 

  • Elliott M (2014) Integrated marine science and management: wading through the morass. Mar Pollut Bull 86(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Elliott M, Quintino V (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54(6):640–645

    Article  CAS  PubMed  Google Scholar 

  • Ellison WT, Southall BL, Clark CW, Frankel AS (2011) A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv Biol 26(1):21–28

    Article  PubMed  Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:S125–S153

    Article  Google Scholar 

  • Engås A, Misund OA, Soldal AV, Horvei B, Solstad A (1995) Reactions of penned herring and cod to playback of original, frequency-filtered and time-smoothed vessel sound. Fish Res 22(3–4):243–254

    Article  Google Scholar 

  • Engås A, Haugland EK, Øvredal JT (1998) Reactions of cod (Gadus morhua, L.) in the pre-vessel zone to an approaching trawler under different light conditions. Hydrobiologia 371(372):199–206

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS One 7:e32954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgibbon QP, Day RD, McCauley RD, Simon CJ, Semmens JM (2017) The impact of seismic air gun exposure on the haemolymph physiology and nutritional condition of spiny lobster, Jasus edwardsii. Mar Pollut Bull 125(1–2):146–156

    Article  CAS  PubMed  Google Scholar 

  • Foote AD, Osborne RW, Hoelzel AR (2004) Whale-call response to masking boat noise. Nature 428(6986):910

    Article  CAS  PubMed  Google Scholar 

  • Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654

    Article  Google Scholar 

  • Francis CD, Barber JR (2013) A framework for understanding noise impacts on wildlife: an urgent conservation priority. Front Ecol Environ 11(6):305–313

    Article  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19(16):1415–1419

    Article  CAS  PubMed  Google Scholar 

  • Friedel T (1999) The vibrational startle response of the desert locust Schistocerca gregaria. J Exp Biol 202:2151–2159

    Article  CAS  PubMed  Google Scholar 

  • Frings H (1964) Problems and prospects in research on marine invertebrate sound production and reception. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, Oxford, pp 155–173

    Google Scholar 

  • Frings H, Frings M (1967) Underwater sound fields and behavior of marine invertebrates. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, Oxford, pp 261–282

    Google Scholar 

  • Gebresenbet G, Aradom S, Bulitta FS, Hjerpe E (2011) Vibration levels and frequencies on vehicle and animals during transport. Biosyst Eng 110(1):10–19

    Article  Google Scholar 

  • Gordon SD, Uetz GW (2012) Environmental interference: impact of acoustic noise on seismic communication and mating success. Behav Ecol 23(4):707–714

    Article  Google Scholar 

  • Götz T, Hastie G, Hatch L, Raustein O, Southall BL, Tasker M, Thomsen F (2009) Overview of the impacts of anthropogenic underwater sound in the marine environment. OSPAR Commission Biodiversity Series. https://qsr2010.ospar.org/media/assessments/p00441_Noise_background_document.pdf

  • Greenfield MD (1988) Interspecific acoustic interactions among katydids Neoconocephalus: inhibition-induced shifts in diel periodicity. Anim Behav 36(3):684–695

    Article  Google Scholar 

  • Guerra PA, Mason AC (2005) Information on resource quality mediates aggression between male Madagascar hissing cockroaches, Gromphadorhina portentosa (Dictyoptera: Blaberidae). Ethology 111(6):626–637

    Article  Google Scholar 

  • Guo S, Lee HP, Khoo BC (2011) Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement. J Exp Mar Biol Ecol 409(1–2):253–258

    Article  Google Scholar 

  • Guo S, Lee HP, Teo SLM, Khoo BC (2012) Inhibition of barnacle cyprid settlement using low frequency and intensity ultrasound. Biofouling 28(2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Gurule-Small GA, Tinghitella RM (2018) Developmental experience with anthropogenic noise hinders adult mate location in an acoustically signalling invertebrate. Biol Lett 14(2):20170714

    Article  PubMed  PubMed Central  Google Scholar 

  • Habib L, Bayne EM, Boutin S (2007) Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. J Appl Ecol 44(1):176–184

    Article  Google Scholar 

  • Hagstrum DW, Flinn PW (1993) Comparison of acoustical detection of several species of stored-grain beetles (Coleoptera: Curculionidae, Tenebrionidae, Bostrichidae, Cucujidae) over a range of temperatures. J Econ Entomol 86(4):1271–1278

    Article  Google Scholar 

  • Halfwerk W, Slabbekoorn H (2015) Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol Lett 11(4):20141051

    Article  PubMed  PubMed Central  Google Scholar 

  • Halfwerk W, Ryan MJ, Wilson PS (2016) Wind- and rain-induced vibrations impose different selection pressures on multimodal signaling. Am Nat 188(3):279–288

    Article  PubMed  Google Scholar 

  • Halpern BS, McLeod KL, Rosenberg AA, Crowder LB (2008) Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean Coast Manag 51(3):203–211

    Article  Google Scholar 

  • Hammond PS, Macleod K, Berggren P, Borchers DL, Burt L, Cañadas A, Desportes G, Donovan GP, Gilles A, Gillespie D, Gordon J, Hiby L, Kuklik I, Leaper R, Lehnert K, Leopold M, Lovell P, Øien N, Paxton CGM, Ridoux V, Rogan E, Samarra F, Scheidat M, Sequeira M, Siebert U, Skov H, Swift R, Tasker ML, Teilmann J, Van Canneyt O, Vázquez JA (2013) Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biol Conserv 164:107–122

    Article  Google Scholar 

  • Harwood J (2002) Mitigating the effects of acoustic disturbance in the oceans. Aquat Conserv 12(5):485–488

    Article  Google Scholar 

  • Hawkins AD, Popper AN (2012) Effects of noise on fish, fisheries, and invertebrates in the U.S. Atlantic and Arctic from energy industry sound-generating activities. A literature synthesis. U.S. Department of the Interior, Bureau of Ocean Energy Management. Contract M11PC00031 153. https://tethys.pnnl.gov/sites/default/files/publications/Hawkins-and-Popper-2012.pdf

  • Hawkins AD, Popper AN (2014) Assessing the impact of underwater sounds on fishes and other forms of marine life. Acoust Today 10(2):30–41

    Google Scholar 

  • Hawkins AD, Pembroke AE, Popper AN (2014a) Information gaps in understanding the effects of noise on fishes and invertebrates. Rev Fish Biol Fisher 25:39–64

    Article  Google Scholar 

  • Hawkins AD, Roberts L, Cheesman S (2014b) Responses of free-living coastal pelagic fish to impulsive sounds. J Acoust Soc Am 135(5):3101–3116

    Article  PubMed  Google Scholar 

  • Hazelwood RA (2012) Ground roll waves as a potential influence on fish: measurement and analysis techniques. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, New York, pp 449–452

    Chapter  Google Scholar 

  • Heinisch P, Wiese K (1987) Sensitivity to movement and vibration of water in the North Sea shrimp Crangon crangon L. J Crustacean Biol 7(1):401–413

    Article  Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge MA

    Book  Google Scholar 

  • Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking prairie mole cricket males. Am Zool 41(5):1200–1214

    Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26(5):R187–R191

    Article  CAS  PubMed  Google Scholar 

  • Hill PSM, Mazzoni V, Narins P, Virant-Doberlet M, Wessel A (2019) Quo vadis, biotremology? In: Hill PSM, Lakes-Harlan R, Mazzoni V, Narins P, Virant-Doberlet M, Wessel A (eds) Biotremology: studying vibrational behavior. Springer Nature, Cham, pp 3–14

    Chapter  Google Scholar 

  • Hunt RE, Morton TL (2001) Regulation of chorusing in the vibrational communication system of the leafhopper Graminella nigrifrons. Integr Comp Biol 41(5):1222–1228

    Google Scholar 

  • Janssen J (1990) Localization of substrate vibrations by the mottled sculpin (Cottus bairdi). Copeia 1990(2):349–355

    Google Scholar 

  • Karlsen HE (1992) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187

    Article  Google Scholar 

  • Kastelein RA (2008) Effects of vibrations on the behaviour of cockles (Bivalve molluscs). Bioacoustics 17(1–3):74–75

    Article  Google Scholar 

  • Kauke M, Savary P (2010) Effect of noise and vibration in milking parlour on dairy cow. Agrarforsch Schweiz 1(3):96–101

    Google Scholar 

  • Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14(10):1052–1061

    Article  PubMed  Google Scholar 

  • Kim D-S, Lee J-S (2000) Propagation and attenuation characteristics of various ground vibrations. Soil Dyn Earthq Eng 19(2):115–126

    Article  Google Scholar 

  • Kirschel ANG, Blumstein DT, Cohen RE, Buermann W, Smith TB, Slabbekoorn H (2009) Birdsong tuned to the environment: green hylia song varies with elevation, tree cover, and noise. Behav Ecol 20(5):1089–1095

    Article  Google Scholar 

  • Kowalewski J, Patrick PH, Christie AE (1992) Effect of acoustic energy on the zebra mussel (Dreissena polymorpha). In: Nalepa TF, Scholesser DW (eds) Zebra mussels biology, impacts and control. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Kurzweil LG (1979) Ground-borne noise and vibration from underground rail systems. J Sound Vib 66(3):363–370

    Article  Google Scholar 

  • Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, Heidelberg, pp 277–302

    Google Scholar 

  • Lampe U, Schmoll T, Franzke A, Reinhold K (2012) Staying tuned: grasshoppers from noisy roadside habitats produce courtship signals with elevated frequency components. Funct Ecol 26(6):1348–1354

    Article  Google Scholar 

  • Lewis ER, Narins PM, Jarvis JU, Bronner G, Mason MJ (2006) Preliminary evidence for the use of microseismic cues for navigation by the Namib golden mole. J Acoust Soc Am 119(2):1260–1268

    Article  PubMed  Google Scholar 

  • Márquez R, Beltrán JF, Llusia D, Penna M, Narins PM (2017) Synthetic rainfall vibrations evoke toad emergence. Curr Biol 26(24):R1270–R1271

    Article  CAS  Google Scholar 

  • Maruzzo D, Conlanb S, Aldred N, Clare AS, Høeg JT (2011) Video observation of surface exploration in cyprids of Balanus amphitrite: the movements of antennular sensory setae. Biofouling 27(2):225–239

    Article  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133(2):174–185

    Article  Google Scholar 

  • Mazzoni V, Gordon SD, Nieri R, Krugner R (2017) Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca vitripennis. Pest Manag Sci 73(11):2328–2333

    Article  CAS  PubMed  Google Scholar 

  • McCauley RD, Day RD, Swadling KM, Fitzgibbon QP, Watson RA, Semmens JM (2017) Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat Ecol Evol 1:0195. https://www.nature.com/articles/s41559-017-0195

    Article  Google Scholar 

  • McGregor PK (1992) Playback and studies of animal communication. Springer, New York

    Book  Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19(3):650–656

    Article  Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64(12):2043–2051

    Article  Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239(1):101–122

    Article  Google Scholar 

  • Miksis-Olds JL, Wagner T (2011) Behavioral response of manatees to variations in environmental sound levels. Mar Mamm Sci 27(1):130–148

    Article  Google Scholar 

  • Miller JH, Potty GR, Kim HK (2016) Pile-driving pressure and particle velocity at the seabed: quantifying effects on Crustaceans and groundfish. In: Popper A, Hawkins A (eds) The effects of noise on aquatic life II. Springer, New York, pp 719–728

    Chapter  Google Scholar 

  • Mitra O, Callaham M, Smith ML, Yack JE (2009) Grunting for worms: seismic vibrations cause Diplocardia earthworms to emerge from the soil. Biol Lett 5:16–19

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Jeffs A, Simpson SD, Meekan M, Tindle C (2006) Sound as an orientation cue for the pelagic larvae of reef fish and crustaceans. Adv Mar Biol 51:143–196

    Article  PubMed  Google Scholar 

  • Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759

    Article  PubMed  Google Scholar 

  • Morales MA, Barone JL, Henry CS (2008) Acoustic alarm signalling facilitates predator protection of treehoppers by mutualist ant bodyguards. P Roy Soc B Biol 275:1935–1941

    Google Scholar 

  • Mosher JI (1972) The responses of Macoma balthica (bivalvia) to vibrations. Proc Malac Soc Lond 40(2):125–131

    Google Scholar 

  • Mueller-Blenkle C, McGregor PK, Gill AB, Andersson, MH, Metcalfe J, Bendall V, Sigray P, Wood D, Thomsen F (2010) Effects of pile-driving noise on the behaviour of marine fish. COWRIE Ref: Fish 06–08/Cefas Ref: C3371. https://tethys.pnnl.gov/sites/default/files/publications/Mueller-Benkle_et_al_2010.pdf

  • Narins PM, Lewis ER, Jarvis JJ, O’Riain J (1997) The use of seismic signals by fossorial southern African mammals: a neuroethological gold mine. Brain Res Bull 44(5):641–646

    Article  CAS  PubMed  Google Scholar 

  • Nedelec SL, Campbell J, Radford AN, Simpson SD, Merchant ND (2016) Particle motion: the missing link in underwater acoustic ecology. Methods Ecol Evol 7(7):836–842

    Article  Google Scholar 

  • Neo YY, Hubert J, Bolle LJ, Winter HV, Slabbekoorn H (2018) European seabass respond more strongly to noise exposure at night and habituate over repeated trials of sound exposure. Environ Pollut 239:367–374

    Article  CAS  PubMed  Google Scholar 

  • Newman WA, Abbott DP (1980) Cirripedia. In: Morris RH, Abbott EC, Haderlie DP (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, CA, pp 504–535

    Google Scholar 

  • O’Connell-Rodwell CE, Wood JD, Rodwell TC, Puria S, Partan SR, Keefe R, Shriver D, Arnason BT, Hart LA (2006) Wild elephant (Loxodonta africana) breeding herds respond to artificially transmitted seismic stimuli. Behav Ecol Sociobiol 59(6):842–850

    Article  Google Scholar 

  • O’Connell-Rodwell C, Wood J, Kinzley C, Rodwell T, Poole J, Puria S (2007) Wild African elephants (Loxodonta africana) discriminate between familiar and unfamiliar conspecific seismic alarm calls. J Acoust Soc Am 122(2):823–830

    Article  PubMed  Google Scholar 

  • Orci KM, Petróczki K, Barta Z (2016) Instantaneous song modification in response to fluctuating traffic noise in the tree cricket Oecanthus pellucens. Anim Behav 112:187–194

    Article  Google Scholar 

  • Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293(5536):1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Parvulescu A (1964) The acoustics of small tanks. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, Oxford, pp 7–13

    Google Scholar 

  • Pfannenstiel RS, Hunt RE, Yeargan KV (1995) Orientation of a hemipteran predator to vibrations produced by feeding caterpillars. J Insect Behav 8:1–9

    Article  Google Scholar 

  • Phillips ML, Chio G, Hall CL, ter Hofstede HM, Howard DR (2020) Seismic noise influences brood size dynamics in a subterranean insect with biparental care. Anim Behav 161:15–22

    Article  Google Scholar 

  • Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM, Gage SH, Pieretti N (2011) Soundscape ecology: the science of sound in the landscape. Bioscience 61(3):203–216

    Article  Google Scholar 

  • Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Cent Eur J Biol 3(2):189–197

    Google Scholar 

  • Popper AN (2005) What do we know about pile driving and fish? In: Proceedings of the 2005 Internation Conference on Ecology and Transportation, pp 26–28. https://trid.trb.org/Results?q=&serial=%222005%20International%20Conference%20on%20Ecology%20and%20Transportation%20(ICOET%202005)%22#/View/1355622

  • Popper AN, Hastings MC (2009) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75(3):455–489

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hawkins AD (2018) The importance of particle motion to fishes and invertebrates. J Acoust Soc Am 143:470–488

    Article  PubMed  Google Scholar 

  • Popper AN, Hawkins AD, Fay D, Mann RR, Bartol S, Carlson S, Coombs T, Ellison WT, Gentry R, Halvorsen MB, Lokkeborg S, Rogers P, Southall BL, Zeddies DG, Tavolga WN (2014) ASA S3/SC1.4 TR-2014 sound exposure guidelines for fishes and sea turtles: a technical report prepared by ANSI-accredited standards committee S3/SC1 and registered with ANSI. Springer, Cham

    Google Scholar 

  • Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLoS Biol 6(2):e17478

    CAS  Google Scholar 

  • Rabanal LI, Kuehl HS, Mundry R, Robbins MM, Boesch C (2010) Oil prospecting and its impact on large rainforest mammals in Loango National Park, Gabon. Biol Conserv 143(4):1017–1024

    Article  Google Scholar 

  • Rabin LA, Greene CM (2002) Changes to acoustic communication systems in human-altered environments. J Comp Psychol 116(2):137–141

    Article  PubMed  Google Scholar 

  • Raboin M, Elias DO (2019) Anthropogenic noise and the bioacoustics of terrestrial invertebrates. J Exp Biol 222:jeb178749

    Article  PubMed  Google Scholar 

  • Read J, Jones G, Radford AN (2013) Fitness costs as well as benefits are important when considering responses to anthropogenic noise. Behav Ecol 25(1):4–7

    Article  Google Scholar 

  • Rittschof D, Forward RB, Cannon G, Welch JM, McClary M, Holm ER, Clare AS, Conova S, McKelvey LM, Bryan P, Van Dover CL (1998) Cues and context: larval responses to physical and chemical cues. Biofouling 12(1–3):31–44

    Article  Google Scholar 

  • Roberts L, Elliott M (2017) Good or bad vibrations? Impacts of anthropogenic vibration on the marine epibenthos. Sci Total Environ 595:255–268

    Article  CAS  PubMed  Google Scholar 

  • Roberts L, Laidre ME (2019a) Finding a home in the noise: cross-modal impact of anthropogenic vibration on animal search behaviour. Biol Open 8:1–7

    Article  CAS  Google Scholar 

  • Roberts L, Laidre ME (2019b) Noise alters chemically-mediated search behavior in a marine hermit crab: studying cross-modal effects on behavior. Proc Meetings Acoust 37:070001

    Article  Google Scholar 

  • Roberts L, Cheesman S, Breithaupt T, Elliott M (2015) Sensitivity of the mussel Mytilus edulis to substrate-borne vibration in relation to anthropogenically generated noise. Mar Ecol Prog Ser 538:185–195

    Article  CAS  Google Scholar 

  • Roberts L, Cheesman S, Elliott M, Breithaupt T (2016a) Sensitivity of Pagurus bernhardus (L.) to substrate-borne vibration and anthropogenic noise. J Exp Mar Bio Ecol 474:185–194

    Article  Google Scholar 

  • Roberts L, Pérez-Domínguez R, Elliott M (2016b) Use of baited remote underwater video (BRUV) and motion analysis for studying the impacts of underwater noise upon free ranging fish and implications for marine energy management. Mar Pollut Bull 112(1–2):75–85

    Article  CAS  PubMed  Google Scholar 

  • Roberts L, Harding HR, Voellmy I, Bruintjes R, Simpson SD, Radford AB, Breithaupt T, Elliott M (2017) Exposure of benthic invertebrates to sediment vibration: from laboratory experiments to outdoor simulated pile-driving. Proc Meetings Acoust 27:1

    Google Scholar 

  • Rogers P, Hawkins AD, Popper AN, Fay RR, Gray MD (2016) Parvulescu revisited: small tank acoustics for bioacousticians. In: Hawkins AD, Popper AN (eds) The effects of noise on aquatic life II. Springer, New York, pp 933–941

    Chapter  Google Scholar 

  • Röhr DL, Paterno GB, Camurugi F, Juncá FA, Garda AA (2016) Background noise as a selective pressure: stream-breeding anurans call at higher frequencies. Org Divers Evol 16(1):269–273

    Article  Google Scholar 

  • Saxena KN, Kumar H (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36(8):933–936

    Article  Google Scholar 

  • Scheifele PM, Andrew S, Cooper RA, Darre M, Musiek FE, Max L (2005) Indication of a Lombard vocal response in the St. Lawrence River beluga. J Acoust Soc Am 117:1486–1492

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AKD, Balakrishnan R (2015) Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A 201(1):133–142

    Article  Google Scholar 

  • Schmidt AKD, Riede K, Römer H (2011) High background noise shapes selective auditory filters in a tropical cricket. J Exp Biol 214:1754–1762

    Article  PubMed  Google Scholar 

  • Schmidt AKD, Römer H, Riede K (2012) Spectral niche segregation and community organization in a tropical cricket assemblage. Behav Ecol 24(2):470–480

    Article  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166(1):37–41

    Article  Google Scholar 

  • Schwartz JJ, Wells KD (1983) The influence of background noise on the behavior of a Neotropical treefrog Hyla ebraccata. Herpetologica 39(2):121–129

    Google Scholar 

  • Schwarz AL, Greer GL (1984) Responses of Pacific herring, Clupea harengus pallasi, to some underwater sounds. Can J Fish Aquat Sci 41(8):1183–1192

    Article  Google Scholar 

  • Scott GB (1994) Effects of short-term whole body vibration on animals with particular reference to poultry. World Poultry Sci J 50(1):25–38

    Article  Google Scholar 

  • Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM, Brown E, Warner KA, Nelson MD, White C, Briggs J, McFarland S, Wittemyer G (2016) A synthesis of two decades of research documenting the effects of noise on wildlife. Biol Rev 91:982–1005

    Article  PubMed  Google Scholar 

  • Shier DM, Lea AJ, Owen MA (2012) Beyond masking: endangered Stephen’s kangaroo rats respond to traffic noise with footdrumming. Biol Conserv 150(1):53–58

    Article  Google Scholar 

  • Sih A, Stamps J, Yang LH, McElreath R, Ramenofsky M (2010) Behavior as a key component of integrative biology in a human-altered world. Integr Comp Biol 50(6):934–944

    Article  PubMed  Google Scholar 

  • Simpson SD, Meekan MG, McCauley RD, Jeffs A (2004) Attraction of settlement-stage coral reef fishes to reef noise. Mar Ecol Prog Ser 276(1):263–268

    Article  Google Scholar 

  • Slabbekoorn H, Peet M (2003) Birds sing at a higher pitch in urban noise. Nature 424:267

    Article  CAS  PubMed  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol Evol 25(7):419–427

    Article  PubMed  Google Scholar 

  • Solan M, Hauton C, Godbold JA, Wood CL, Leighton TG, White P (2016) Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties. Sci Rep 6:1–9

    Article  CAS  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR, Kastak D, Ketten DR, Miller JH, Nachtigall PE, Richardson W, Thomas J, Tyack P (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33(4):411–509

    Article  Google Scholar 

  • Southward AJ, Crisp DJ (1965) Activity rhythms of barnacles in relation to respiration and feeding. J Mar Biol Assoc UK 45(1):161–185

    Article  Google Scholar 

  • Spiga I, Cheesman S, Hawkins A, Perez-Dominguez R, Roberts L, Hughes D, Elliott M, Nedwell J, Bentley M (2012) Understanding the scale and impacts of anthropogenic noise in the marine environment. SoundWaves Consortium Technical Review (ME5205). https://research.ncl.ac.uk/soundwaves/links/pubblications/REVIEW%20new.pdf

  • Stephens DB, Rader RD (1983) Effects of vibration, noise and restraint on heart rate, blood pressure and renal blood flow in the pig. J R Soc Med 76(10):841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens DB, Bailey KJ, Sharman DF, Ingram DL (1985) An analysis of some behavioural effects of the vibration and noise components of transport in pigs. Q J Exp Physiol 70(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Stritih N, Čokl C (2014) The role of frequency in vibrational communication of orthoptera. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 375–393

    Google Scholar 

  • Sueur J (2002) Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biol J Linn Soc 75(3):379–394

    Article  Google Scholar 

  • Tasker ML, Amundin M, Andre M, Hawkins A, Lang W, Merck T, Scholik-Schlomer A, Teilmann J, Thomsen F, Zakharia M (2010) Underwater noise and other forms of energy. MSFD Task Group 11, Joint Research Centre European Commission, Luxembourg. https://ec.europa.eu/environment/marine/pdf/10-Task-Group-11.pdf

  • Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46

    Google Scholar 

  • Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93(5):548–558

    Article  Google Scholar 

  • Tsubaki R, Hosoda N, Kitajima H, Takanashi T (2014) Substrate-borne vibrations induce behavioral responses in the leaf-dwelling cerambycid, Paraglenea fortunei. Zool Sci 31(12):789–794

    Article  Google Scholar 

  • Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86(3):640–657

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Simões JM, Almada VC, Fonseca PJ, Amorim MCP (2010) Vocal behavior during territorial intrusions in the Lusitanian toadfish: boatwhistles also function as territorial ‘keep-out’ signals. Ethology 116(2):155–165

    Article  Google Scholar 

  • Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft R, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 249–274

    Google Scholar 

  • Wardle CS, Carter TJ, Urquhart GG, Johnstone ADF, Ziolkowski AM, Hampson G, Mackie D (2001) Effects of seismic air guns on marine fish. Cont Shelf Res 21(8–10):1005–1027

    Article  Google Scholar 

  • Wiley RH (2006) Signal detection and animal communication. Adv Stud Behav 36:217–247

    Article  Google Scholar 

  • Wiley RH (2015) Noise matters: the evolution of communication. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Wiley RH (2017) How noise determines the evolution of communication. Anim Behav 124:307–313

    Article  Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3(1):69–94

    Article  Google Scholar 

  • Wollerman L (1999) Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim Behav 57(3):529–536

    Article  CAS  PubMed  Google Scholar 

  • Wrege PH, Rowland ED, Thompson BG, Batruch N (2010) Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conserv Biol 24(6):1578–1585

    Article  PubMed  Google Scholar 

  • Wu C-H, Elias DO (2014) Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. Anim Behav 90:47–56

    Article  Google Scholar 

  • Zhadan PM (2005) Directional sensitivity of the Japanese scallop Mizuhopecten yessoensis and swift scallop Chlamys swifti to water-borne vibrations. Russ J Mar Biol 31:28–35

    Article  Google Scholar 

Download references

Acknowledgments

LR would like to recognize and thank those in the underwater noise community who continue to discuss and highlight seabed vibration where few people are doing so currently—particularly Anthony Hawkins and Arthur Popper; Richard Hazelwood, Thomas Breithaupt, Krysia Mazik, and Michael Elliott. DRH thanks Mia Phillips, Nicole Abate, Jessica Briggs, Alicyn Evans, Sophia Bloomer, Sarah Blatchley, and Carrie Hall for assistance in the field and laboratory with collecting data and literature on the effects of vibrational noise on terrestrial animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, L., Howard, D.R. (2022). Substrate-Borne Vibrational Noise in the Anthropocene: From Land to Sea. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_6

Download citation

Publish with us

Policies and ethics