Skip to main content

Ensemble-Based Fact Classification with Knowledge Graph Embeddings

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13261))

Included in the following conference series:

Abstract

Numerous prior works have shown how we can use Knowledge Graph Embeddings (KGEs) for ranking unseen facts that are likely to be true. Much less attention has been given on how to use KGEs for fact classification, i.e., mark unseen facts either as true or false. In this paper, we tackle this problem with a new technique that exploits ensemble learning and weak supervision, following the principle that multiple weak classifiers can make a strong one. Our method is implemented in a new system called \(\mathsf {DuEL}\). \(\mathsf {DuEL}\) post-processes the ranked lists produced by the embedding models with multiple classifiers, which include supervised models like LSTMs, MLPs, and CNNs and unsupervised ones that consider subgraphs and reachability in the graph. The output of these classifiers is aggregated using a weakly supervised method that does not need ground truths, which would be expensive to obtain. Our experiments show that \(\mathsf {DuEL}\) produces a more accurate classification than other existing methods, with improvements up to 72% in terms of \(F_1\) score. This suggests that weakly supervised ensemble learning is a promising technique to perform fact classification with KGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/karmaresearch/duel.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases, vol. 8. Addison-Wesley, Reading (1995)

    Google Scholar 

  2. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Aggarwal, C. (ed.) Social Network Data Analytics, pp. 243–275. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-8462-3_9

    Chapter  Google Scholar 

  3. van Bakel, R., Aleksiev, T., Daza, D., Alivanistos, D., Cochez, M.: Approximate knowledge graph query answering: from ranking to binary classification. In: GKR, pp. 107–124 (2021)

    Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

    Google Scholar 

  6. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: a rule engine for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11779, pp. 19–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_2

    Chapter  Google Scholar 

  7. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)

    Google Scholar 

  8. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL, pp. 4171–4186 (2019)

    Google Scholar 

  9. Dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: COLING, pp. 69–78 (2014)

    Google Scholar 

  10. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Friedman, T., Van den Broeck, G.: Symbolic querying of vector spaces: probabilistic databases meets relational embeddings. In: UAI, pp. 1268–1277 (2020)

    Google Scholar 

  12. Fu, D.Y., Chen, M.F., Sala, F., Hooper, S.M., Fatahalian, K., Ré, C.: Fast and three-rious: speeding up weak supervision with triplet methods. In: ICML, pp. 3280–3291 (2020)

    Google Scholar 

  13. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition and Cooperation in Neural Nets. Lecture Notes in Biomathematics, vol. 45, pp. 267–285. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9_18

    Chapter  Google Scholar 

  14. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

  15. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl.-Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  16. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Joshi, U., Urbani, J.: Searching for embeddings in a haystack: link prediction on knowledge graphs with subgraph pruning. In: WWW, pp. 2817–2823 (2020)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2017)

  20. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2017)

  21. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, pp. 2267–2273 (2015)

    Google Scholar 

  22. Meilicke, C., Chekol, M.W., Fink, M., Stuckenschmidt, H.: Reinforced anytime bottom up rule learning for knowledge graph completion. arXiv:2004.04412 (2020)

  23. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

    Google Scholar 

  24. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL, pp. 327–333 (2018)

    Google Scholar 

  25. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Article  Google Scholar 

  26. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

    Article  Google Scholar 

  27. Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: rapid training data creation with weak supervision. VLDB J. 29(2), 709–730 (2020)

    Article  Google Scholar 

  28. Ratner, A., Hancock, B., Dunnmon, J., Sala, F., Pandey, S., Ré, C.: Training complex models with multi-task weak supervision. In: AAAI, pp. 4763–4771 (2019)

    Google Scholar 

  29. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P. (ed.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  30. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! On training knowledge graph embeddings. In: ICLR (2020)

    Google Scholar 

  31. Safavi, T., Koutra, D., Meij, E.: Evaluating the calibration of knowledge graph embeddings for trustworthy link prediction. In: EMNLP, pp. 8308–8321 (2020)

    Google Scholar 

  32. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  33. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural networks. In: SIGIR, pp. 373–382 (2015)

    Google Scholar 

  34. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)

    Google Scholar 

  35. Speranskaya, M., Schmitt, M., Roth, B.: Ranking vs. classifying: measuring knowledge base completion quality. In: AKBC (2020)

    Google Scholar 

  36. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)

    Google Scholar 

  37. Tabacof, P., Costabello, L.: Probability calibration for knowledge graph embedding models. In: ICLR (2019)

    Google Scholar 

  38. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  39. Wang, P.W., Stepanova, D., Domokos, C., Kolter, J.Z.: Differentiable learning of numerical rules in knowledge graphs. In: ICLR (2019)

    Google Scholar 

  40. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  41. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and rules. In: IJCAI, pp. 1859–1865 (2015)

    Google Scholar 

  42. Wang, Y., Ruffinelli, D., Gemulla, R., Broscheit, S., Meilicke, C.: On evaluating embedding models for knowledge base completion. In: The 4th Workshop on Representation Learning for NLP, pp. 104–112 (2019)

    Google Scholar 

  43. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573 (2017)

    Google Scholar 

  44. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  45. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML, pp. 40–48 (2016)

    Google Scholar 

  46. Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion. arXiv:1909.03193 (2019)

  47. Zhou, Z.H.: Ensemble learning. In: Zhou, Z.H. (ed.) Machine Learning, pp. 181–210. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-1967-3_8

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unmesh Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, U., Urbani, J. (2022). Ensemble-Based Fact Classification with Knowledge Graph Embeddings. In: Groth, P., et al. The Semantic Web. ESWC 2022. Lecture Notes in Computer Science, vol 13261. Springer, Cham. https://doi.org/10.1007/978-3-031-06981-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06981-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06980-2

  • Online ISBN: 978-3-031-06981-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics