Skip to main content

Configuration spaces with summable labels

  • Conference paper
Cohomological Methods in Homotopy Theory

Part of the book series: Progress in Mathematics ((PM,volume 196))

Abstract

An n-monoid is the appropriate extension of an A -space for the theory of n-fold loop spaces. We define spaces of configurations on n-manifolds with summable labels in partial n-monoids. In particular we obtain an n-fold delooping machinery, that extends the construction of the classifying space by Stasheff. Our configuration spaces cover also symmetric products, spaces of rational curves and spaces of labelled subsets. A configuration space with connected space of labels has the homotopy type of the space of sections of a certain bundle. This extends and unifies results by Bödigheimer, Guest, Kallel and May.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Boardman, Homotopy structures and the language of trees, Collection: Algebraic Topology, Vol. XXII, AMS, 1971, 37–58.

    Article  MathSciNet  Google Scholar 

  2. J.M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, LNM 347, 1973.

    MATH  Google Scholar 

  3. C-F. Boedigheimer, Stable splittings of mapping spaces, LNM 1286, 1987, 174–187.

    Google Scholar 

  4. R. Brown, A geometric account of general topology, homotopy types and the fundamental groupoid. Ellis Horwood ltd., Chichester, 1988.

    MATH  Google Scholar 

  5. D. McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. G. Dwyer, P. S. Hirschhorn and D. M. Kan, Model categories and more general abstract homotopy theory, preprint.

    Google Scholar 

  7. W. Fulton, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton, N.J., 1993.

    Google Scholar 

  8. E. Getzler and J.D.S. Jones,Operads, homotopy algebra, and iterated integrals for double loop spaces, Preprint hep-th/9403055.

    Google Scholar 

  9. M. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), no. 1, 119–145.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Kallel, Spaces of particles on manifolds and generalized Poincaré dualities,Preprint math/9810067.

    Google Scholar 

  11. F. Kato, On spaces realizing intermediate stages of the Hurewicz map, Master’s thesis, Department of Mathematics, Shinshu University, 1996.

    Google Scholar 

  12. M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematicians, Vol. II, 97–121, Birkhäuser 1994.

    MathSciNet  Google Scholar 

  13. S. MacLane, Categories for the working mathematician, Springer, 1971.

    Google Scholar 

  14. M. Markl, A compactification of the real configuration space as an operadic completion, Journal of Algebra 215 (1999), 185–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.P. May, The geometry of iterated loop spaces, LNM 271, 1972.

    MATH  Google Scholar 

  16. D. Quillen, Homotopical algebra, LNM 43, 1967.

    MATH  Google Scholar 

  17. C. Rezk, Spaces of algebra structures and cohomology of operads, Ph. D. Thesis, MIT, 1996.

    Google Scholar 

  18. P. Salvatore, Configuration operads, minimal models and rational curves, D. Phil. Thesis, Oxford, 1998.

    Google Scholar 

  19. R. Schwänzl and R. M. Vogt, The categories of A - and E -monoids and ring spaces as closed simplicial and topological categories, Arch. Math. 56 (1991), 405–411.

    Article  MATH  Google Scholar 

  20. G. Segal, Configuration spaces and iterated loop spaces, Invent. Math. 21 (1973), 213–221.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Segal, The topology of rational functions, Acta Math. 143 (1979), 39–72.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Stasheff, From operads to “physically” inspired theories, Proceedings of Renaissance Conference, Cont. Math. 202, 53–81, AMS, 1997.

    Article  MathSciNet  Google Scholar 

  23. N.E. Steenrod, A convenient category of topological spaces, Mich. Math. J. 14 (1967), 133–152.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Salvatore, P. (2001). Configuration spaces with summable labels. In: Aguadé, J., Broto, C., Casacuberta, C. (eds) Cohomological Methods in Homotopy Theory. Progress in Mathematics, vol 196. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8312-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8312-2_23

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9513-2

  • Online ISBN: 978-3-0348-8312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics