Skip to main content

Stress, developmental stability and sexual selection

  • Chapter
Environmental Stress, Adaptation and Evolution

Part of the book series: Experientia Supplementum ((EXS,volume 83))

Summary

Sexual selection may give rise to increases in the general level of stress experienced by individuals, either because intense directional selection reduces the ability of individuals to control the stable development of their phenotype, or because extravagant secondary sexual characters on their own impose stress on their bearers. Sexual selection often acts against individuals with asymmetric or otherwise deviant phenotypes, particularly if such phenotypic deviance occurs in secondary sexual characters. A small number of studies suggests that such characters also are more susceptible to the disruptive effects of deviant environmental conditions than are ordinary morphological characters. Plants often show extensive phenotypic asymmetry, and pollinators avoid asymmetric flowers, either because they are generally less attractive or provide fewer pollinator rewards. Floral symmetry may give rise to sexual selection with direct or indirect fitness benefits, as in animals. Sexual selection in animals may result in selection for relatively larger male body size, an overall increase in body size of a lineage and an increased risk of extinction (Cope’s rule). Reduced stress resistance associated with intense sexual selection may contribute to this trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseeva, T.A., Zinichev, V.V. and Zotin, A.I. (1992) Energiy criteria of reliability and stability of development. Acta Zoologici Fennici 191: 159–165.

    Google Scholar 

  • Andersson, M. (1982) Sexual selection, natural selection and quality advertisement. Biol. Linn. Soc. 17:375–393.

    Article  Google Scholar 

  • Andersson, M. (1994) Sexual Selection. Princeton University Press, Princeton.

    Google Scholar 

  • Arnqvist, G. and Wooster, D. (1995) Meta-analysis: Synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10 :236–240.

    Article  PubMed  CAS  Google Scholar 

  • Balmford, A., Jones, I.L. and Thomas, A.L.R. (1993) On avian asymmetry: Evidence of natural selection for symmetrical tails and wings in birds. Proc. Roy. Soc. London B 252: 245–251.

    Article  Google Scholar 

  • Darwin, C. (1871) The Descent of Man and Selection in Relation to Sex. John Murray, London.

    Book  Google Scholar 

  • Eisenberg, J.F. (1981) The Mammalian Radiations. University of Chicago Press, Chicago.

    Google Scholar 

  • Eriksson, M. (1996) Consequences for plant reproduction of pollinator preference for sym-metric flowers. Ph.D. dissertation, Uppsala University, Sweden.

    Google Scholar 

  • Folstad, I., Arneberg, R and Karter, A.J. (1996) Parasites and antler asymmetry. Oecologia 105: 556–558.

    Article  Google Scholar 

  • Giurfa, M., Eichmann, B. and Menzel, R. (1996) Symmetry perception in an insect. Nature 382:458–461.

    Article  PubMed  CAS  Google Scholar 

  • Graham, J.H., Freeman, D.C. and Emlen, J.M. (1993) Developmental stability: A sensitive indicator of populations under stress. In: W.G. Landis, J.S. Hughes and M.A. Lewis (eds): Environmental Toxicology and Risk Assessment. American Society for Testing and Materials, Philadelphia, pp. 136–158.

    Chapter  Google Scholar 

  • Horridge, G.A. and Zhang, S.W. (1995) Pattern vision in honeybees (Apis mellifera): Flower-like patterns with no predominant orientation. J. Insect Physiol. 41: 681–688.

    Article  CAS  Google Scholar 

  • Ludwig, W. (1932) Das Rechts-Links Problem im Tierreich and beim Menschen. Springer-Verlag, Berlin.

    Google Scholar 

  • Manning, J.T. and Chamberlain, A.T. (1993a) Fluctuating asymmetry in gorilla canines: A sen-sitive indicator of environmental stress. Proc. Roy. Soc. London B 255:189–193.

    Article  Google Scholar 

  • Manning, J.T. and Chamberlain, A.T. (1993b) Fluctuating asymmetry, sexual selection and canine teeth in primates. Proc. Roy. Soc. London B 251: 83–87.

    Article  CAS  Google Scholar 

  • McLain, D.K. (1993) Cope’s rule, sexual selection and the loss of ecological plasticity. Oikos 68:490–500.

    Article  Google Scholar 

  • McLain, D.K., Moulton, M.P. and Redfearn, T.E (1995) Sexual selection and the risk of extinction of introduced birds on oceanic island. Oikos 74:27–34.

    Article  Google Scholar 

  • Midgley, J.J. and Johnson, S.D. (1997) Some pollinators do not prefer symmetrically marked or shaped daisy (Asteraceae) flowers. Evol. Ecol.; in press.

    Google Scholar 

  • MØller, A.P. (1990) Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behay. 40:1185–1187.

    Article  Google Scholar 

  • MØller, A.P. (1992a) Patterns of fluctuating asymmetry in weapons: Evidence for reliable signalling of quality in beetle horns and bird spurs. Proc. Roy. Soc. London B 248:199–206.

    Article  Google Scholar 

  • MØller, A.P. (1992b) Fluctuating asymmetry and the evolution of signals. In:R Bateson and M. Gomendio (eds): Workshop on Behavioural Mechanisms in Evolutionary Perspective. Instituto Juan March de Estudios e Investigaciones, Madrid, pp. 96–98.

    Google Scholar 

  • MØller, A.R (1992c) Parasites differentially increase the degree of fluctuating asymmetry in secondary sexual characters. .1 Evol. Biol. 5: 691–699.

    Article  Google Scholar 

  • MØller, A.P. (1993a) Morphology and sexual selection in the barn swallow Hirundo rustica in Chernobyl, Ukraine. Proc. Roy. Soc. London B 252: 51–57.

    Article  Google Scholar 

  • MØller, A.R (1993b) Developmental stability, sexual selection and the evolution of secondary sexual characters. Etología 3: 199–208.

    Google Scholar 

  • MØller, A.P. (1994) Symmetrical male sexual ornaments, paternal care and offspring quality. Behay. Ecol. 5:188–194.

    Google Scholar 

  • MØller, A.P. (1995) Bumblebee preference for symmetrical flowers. Proc. Nat. Acad. Sci. USA 92:2288–2292.

    Article  PubMed  Google Scholar 

  • MØller, A.P. (1996) Floral asymmetry, embryo abortion and developmental selection in plants. Proc. Roy. Soc. London B 263:53–56.

    Article  Google Scholar 

  • MØller, A.P. and Eriksson, M. (1994) Patterns of fluctuating asymmetry in flowers: Implications for honest honest signalling for pollinators. J. Evol. Biol. 7: 97–113.

    Article  Google Scholar 

  • MØller, A.P. and Eriksson, M. (1995) Flower asymmetry and sexual selection in plants. Oikos 73:15–22.

    Article  Google Scholar 

  • MØller, A.P. and Höglund, J. (1991) Patterns of fluctuating asymmetry in avian feather ornaments: Implications for models of sexual selection. Proc. Roy. Soc. London B 245:1–5.

    Article  Google Scholar 

  • MØller, AP. and Pomiankowski, A. (1993a) Fluctuating asymmetry and sexual selection. Genetica 89:267–279.

    Article  Google Scholar 

  • MØller, A.P. and Pomiankowksi, A. (1993b) Punctuated equilibria or gradual evolution: Fluc-tuating asymmetry and variation in the rate of evolution. J. Theor. Biol. 161: 359–367.

    Article  PubMed  Google Scholar 

  • MØller, A.P. and Sorci, G. (1997) Insect preference for symmetrical flower models.

    Google Scholar 

  • MØller, A.P. and Swaddle, J.P. (1997) Asymmetry Developmental Stability and Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • MØller, A.P. and Thornhill, R. (1997a) A meta-analysis of the heritability of developmental stability. J. Evol. Biol. 10 :1–16.

    Article  Google Scholar 

  • MØller, A.P. and Thornhill, R. (1997b) Developmental stability is heritable. J. Evol. Biol. 10:69–76.

    Article  Google Scholar 

  • MØller, A.P. and Thornhill, R. (1997c) Developmental stability and sexual selection: A meta-analysis. Am. Nat.; in press.

    Google Scholar 

  • Ozernyuk, N.D., Dyomin, V.I., Prokofyev, E.A. and Androsova, I.M. (1992) Energy homeostasis and developmental stability. Acta Zoologici Fennici 191:167–175.

    Google Scholar 

  • Palmer, A.R. and Strobeck, C. (1986) Fluctuating asymmetry: Measurement, analysis and patterns. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Parsons, P.A. (1990) Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 65: 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, P.A. (1995) Stress and limits to adaptation. Sexual selection. J. Evol. Biol. 8:455–461.

    Article  Google Scholar 

  • Romer, A.S. (1966) Vertebrate Paleontology. University of Chicago Press, Chicago.

    Google Scholar 

  • Sachs, T. (1994) Variable development as a basis for robust pattern formation. J. Theor. Biol. 170:423–425.

    Article  Google Scholar 

  • Sachs, T., Novoplansky, A. and Cohen, D. (1993) Plants as competing populations of redundant organs. Plant Cell Environ. 16: 765–770.

    Article  Google Scholar 

  • Sherry, R.A. and Lord, E.M. (1996) Developmental stability in flowers of Clarkia tembloriensis (Onagraceae). J. Evol. Biol. 9: 911–930.

    Article  Google Scholar 

  • Sorci, G., MØller, A.P. and Clobert, J. (1996) Plumage dichromatism of birds predicts introduction success in New Zealand. J. Anim. Ecol.; in press.

    Google Scholar 

  • Thornhill, R. and Sauer, K.P. (1992) Genetic sire effects on the fighting ability of sons and daughters and mating success of sons in the scorpionfly (Panorpa vulgaris). Anim. Behay. 43:255–264.

    Article  Google Scholar 

  • Tomkins, J.L. and Simmons, L.W. (1995) Patterns of fluctuating asymmetry in earwig forceps: No evidence for reliable signalling. Proc. Roy. Soc. London B 259: 89–96.

    Article  Google Scholar 

  • Watson, P.J. and Thornhill, R. (1994) Fluctuating asymmetry and sexual selection. Trends Ecol. Evol. 9:21–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Basel AG

About this chapter

Cite this chapter

Møller, A.P. (1997). Stress, developmental stability and sexual selection. In: Bijlsma, R., Loeschcke, V. (eds) Environmental Stress, Adaptation and Evolution. Experientia Supplementum, vol 83. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8882-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8882-0_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9813-3

  • Online ISBN: 978-3-0348-8882-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics