Skip to main content

Part of the book series: Springer INdAM Series ((SINDAMS,volume 6))

Abstract

Climate is a complex dynamical system, whose understanding is a fascinating scientific challenge which has crucial implications on our society. Like any science, the study of climate is based on data, measurements and experiments, and requires the development of analysis and modeling tools to build a coherent view of climate and its variability. In such a framework, the role of Mathematics and of mathematical developments is essential. In the present contribution, I discuss the hierarchy of climate models, mentioning both the progress of the last thirty years, the role of mathematical approaches, and the many open questions which still need to be clarified. The need for a coherent theory of climate is advocated, as a world-wide effort to understand this fascinating manifestation of Planet Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baudena, M., D’Andrea, F., Provenzale, A.: A model for soil-vegetation-atmosphere interactions in water-limited ecosystems. Water Resour. Res. 44, 1–9 (2008)

    Google Scholar 

  2. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus, 34, 10–16 (1982)

    Article  Google Scholar 

  3. Bordi, I., Fraedrich, K., Sutera, A., Zhu, X.: Transient response to well-mixed greenhouse gas changes. Theor. Appl. Climatol., 109, 245–252 (2012)

    Article  Google Scholar 

  4. Brovkin, V., Claussen, M., Petoukhov, V., Ganopolski, A.: On the stability of the atmospherevegetation system in the Sahara/Sahel region. J. Geophys. Res. 103(31), 613–624 (1998)

    Google Scholar 

  5. Charney, J.: Dynamics of deserts and droughts in the Sahel. Q. J. Roy Meteor. Soc. 101, 193–202 (1975)

    Article  Google Scholar 

  6. Claussen, M.: On multiple solutions of the atmosphere-vegetation system in present-day climate. Global Change Biology 4, 549–559 (1998)

    Article  Google Scholar 

  7. Claussen, M. and 18 others: Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics 18, 579–586 (2002)

    Article  Google Scholar 

  8. Cresto Aleina, F., Baudena, M., D’Andrea, F., Provenzale, A.: Multiple equilibria on planet Dune: climate-vegetation dynamics on a sandy planet. Tellus B (2013). doi: 10.3402/tellusb.v65i0.17662

    Google Scholar 

  9. D’Andrea, F., Provenzale, A., Vautard, R., De Noblet-Decoudré, N.: Hot and cool summers: Multiple equilibria of the continental water cycle. Geophys. Res. Lett. (2006). doi: 10.1029/2006GL027972

    Google Scholar 

  10. Dekker, S.C., de Boer, H.J., Brovkin, V., Fraedrich, K., Wassen, M.J., Rietkerk, M.: Biogeophysical feedbacks trigger shifts in the modelled climate system at multiple scales. Biogeosciences 7, 1237–1245 (2010)

    Article  Google Scholar 

  11. Dijkstra, H.A.: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Nino. Springer, New York, USA (2005)

    Google Scholar 

  12. Dijkstra, H.A.: Nonlinear Climate Dynamics. Cambridge University Press, Cambridge, UK (2013)

    Book  Google Scholar 

  13. Fraedrich, K., Jansen, H., Kirk, E., Luksch, U., Lunkeit, F.: The Planet Simulator: Towards a user friendly model. Meteorologische Zeitschrift 14, 299–304 (2005)

    Article  Google Scholar 

  14. Ghil, M.: Cryothermodynamics: the chaotic dynamics of paleoclimate. Physica D 77, 130–159 (1994)

    Article  Google Scholar 

  15. Ghil, M., Childress, S.: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory and Climate Dynamics. Springer, New York, USA (1987)

    Book  Google Scholar 

  16. Gildor, H., Tziperman, E.: A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophysical Res. Oceans 106, 9117–9133 (2001)

    Article  Google Scholar 

  17. Hazeleger, W., Bintanja, R.: Studies with the EC-Earth seamless earth system prediction model. Climate Dynamics 39, 2609–2610 (2012)

    Article  Google Scholar 

  18. Jin, F.F., Neelin, J.D., Ghil, M.: El Nino on the Devil’s Staircase: Annual subharmonic steps to chaos. Science 264, 70–72 (1994)

    Article  CAS  Google Scholar 

  19. Lovelock, J.E.: Gaia. A new look at life on Earth. Oxford University Press, Oxford, UK (1979)

    Google Scholar 

  20. Milankovitch, M.: Canon of Insolation and the Ice Age Problem. Royal Serbian Academy, Belgrade (1941)

    Google Scholar 

  21. North, G.R., Cahalan, R.F., Coakley, J.A. Jr: Energy Balance ClimateModels. Rev. Geophysics and Space Physics 19, 91–121 (1981)

    Article  Google Scholar 

  22. McGuffie, K., Henderson-Sellers, A.: A Climate Modelling Primer. Wiley, Chichester, UK (2005)

    Book  Google Scholar 

  23. Paillard, D.: Glacial cycles: Toward a new paradigm. Reviews of Geophysics 39, 325–346 (2001)

    Article  CAS  Google Scholar 

  24. Peixoto, J.P., Oort, A.H.: Physics of Climate. AIP Press, New York, USA (1992)

    Google Scholar 

  25. Pierrehumbert, R.T.: Principles of Planetary Climate. Cambridge University Press, Cambridge, UK (2010)

    Book  Google Scholar 

  26. Rietkerk, M. and 15 others: Local ecosystem feedbacks and critical transitions in the climate. Ecological Complexity 8, 223–228 (2011)

    Article  Google Scholar 

  27. Spiegel, D.S., Menou, K., Scharf, C.A.: Habitable Climates. The Astrophysical Journal 681, 1609–1623 (2008)

    Article  Google Scholar 

  28. Stommel, H.: Thermohaline Convection with Two Stable Regimes of Flow. Tellus 13, 224–230 (1961)

    Article  Google Scholar 

  29. Tyler, D.R., Catling, D.C.: An analytic radiative-convective model for planetary atmospheres. The Astrophysical Journal (2012). doi:10.1088/0004-637X/757/1/104

    Google Scholar 

  30. Vladilo, G., Murante, G., Silva, L., Provenzale, A., Ferri, G., Ragazzini, G.: The habitable zone of Earth-like planets with different levels of atmospheric pressure. The Astrophysical Journal (2013). doi:10.1088/0004-637X/767/1/65

    Google Scholar 

  31. Washington, W.M., Parkinson, C.L.: An Introduction to Three-Dimensional Climate Modeling. University Science Books, Sausalito, CA, USA (2005)

    Google Scholar 

  32. Williams, D.M., Kasting, J.F.: Habitable Planets with High Obliquities. ICARUS 129, 254–267 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Provenzale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Provenzale, A. (2014). Climate as a Complex Dynamical System. In: Celletti, A., Locatelli, U., Ruggeri, T., Strickland, E. (eds) Mathematical Models and Methods for Planet Earth. Springer INdAM Series, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-02657-2_11

Download citation

Publish with us

Policies and ethics