Skip to main content

Prediction of the Behavior of Mammalian Cells after Exposure to Ionizing Radiation Based on the New Mathematical Model of ATM-Mdm2-p53 Regulatory Pathway

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 283))

Abstract

Eukaryotic cells are exposed continuously to the genotoxic stresses caused by various sources, such as ionizing radiation (IR) that generates DNA double-strand breaks (DSBs). In order to maintain genomic integrity, the DNA damage response is activated. DSBs are detected by ATM protein kinase that stabilizes and activates p53 tumor suppressor, which target genes are involved in cell cycle arrest, DNA repair and apoptosis. We propose a preliminary mathematical model that explains p53 regulation based on ATM-dependent detector system. We linked the existing p53-Mdm2 pathway model with checkpoint kinase 2 that inhibits p53 degradation, and MRN complex that activates ATM upon DSBs induction. Moreover, recent works shown that the critical component of ATM-dependent signaling pathway is played by phosphatase Wip1 that regulates dephosphorylation events. Additionally, in the presented model we included Wip1 transcriptionally dependent on p53. The preliminary results of simulation analysis show that ATM pathway is an effective system for DSBs detection with strong amplification signal for Wip1 and p53 and quick response. Furthermore, we observed strong dependence of the cellular response to the DNA damage on Wip1, what leads to the conclusion that it plays a role as a gatekeeper in the ATM-Mdm2-p53 regulatory loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindahl, T., Barnes, D.E.: Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133 (2012)

    Article  Google Scholar 

  2. Lopez-Contreras, A.J., Fernandez-Capetillo, O.: Protein Phosphorylation in Human Health, 1st edn. InTech (2012)

    Google Scholar 

  3. Bakkenist, C.H., Kastan, M.B.: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003)

    Article  Google Scholar 

  4. Lee, J.H., Paull, T.T.: ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308(5721), 551–554 (2005)

    Article  Google Scholar 

  5. Derheimer, F.A., Kastan, M.B.: Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Letters 584, 3675–3681 (2010)

    Article  Google Scholar 

  6. Ahn, J., Urist, M., Prives, C.: The Chk2 protein kinase. DNA Repair 3, 1039–1047 (2004)

    Article  Google Scholar 

  7. Matsui, T., Katsuno, Y., Inoue, T., Fujita, F., Joh, T., Niida, H., Murakami, H., Itoh, M., Nakanishi, M.: Negative regulation of Chk2 expression by p53 is dependent on the CCAAT-binding transcription factor NF-Y. J. Biol. Chem. 279(24), 25093–25100 (2004)

    Article  Google Scholar 

  8. Perona, R., Moncho-Amor, V., Machado-Pinilla, R., Belda-Iniesta, C., Sanchez-Perez, I.: Role of Chk2 in cancer development. Clinical and Translational Oncology 10, 538–542 (2008)

    Article  Google Scholar 

  9. Maclaine, N.J., Hupp, T.: The regulation of p53 protein function by phosphorylation. In: Ayed, A., Hupp, T. (eds.) p53 Molecular Biology Intelligence Unit. Landes Bioscience and Springer Science+Business Media LCC (2010)

    Google Scholar 

  10. Moll, U.M., Petrenko, O.: The MDM2-p53 interaction. Mol. Cancer Res. 1(14), 1001–1008 (2003)

    Google Scholar 

  11. Lu, X., Ma, O., Nguyen, T.A., Jones, S.N., Oren, M., Donehower, L.A.: The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 12(4), 342–354 (2007)

    Article  Google Scholar 

  12. Cantley, L.C., Neel, B.G.: New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/ AKT pathway. Proc. Natl. Acad. Sci. USA 96, 4240–4245 (1999)

    Article  Google Scholar 

  13. Lowe, J., Cha, H., Lee, M.O., Mazur, S.J., Appella, E., Fornace, A.J.: Regulation of the Wip1 phosphatase and its effects on the stress response. Frontiers in Bioscience 17, 1480–1498 (2012)

    Article  Google Scholar 

  14. Batchelor, E., Loewer, A., Mock, C., Lahav, G.: Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol. 7, 488 (2011)

    Article  Google Scholar 

  15. Elias, J., Dimitrio, L., Clairambault, J., Natalini, R.: The p53 protein and its molecular network: Modelling a missing link between DNA damage and cell fate. Biochim Biophys Acta. 1844(1 Pt. B), 232–247 (2014)

    Article  Google Scholar 

  16. Zhang, W., Cheng, Y.M., Liew, K.M.: A mathematical analysis of DNA damage induced G2 phase transition. Applied Mathematics and Computation 225, 765–774 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kim, D.H., Rho, K., Kim, S.: A theoretical model for p53 dynamics: identifying optimal therapeutic strategy for its activation and stabilization. Cell Cycle 8(22), 3707–3716 (2009)

    Article  Google Scholar 

  18. Dimitrio, L., Clairambault, J., Natalini, R.: A spatial physiological model for p53 intracellular dynamics. Journal of Theoretical Biology 316, 9–24 (2013)

    Article  MathSciNet  Google Scholar 

  19. Puszynski, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic model of p53 regulation. Journal of Theoretical Biology 254, 452–465 (2008)

    Article  Google Scholar 

  20. Puszynski, K., Bertolusso, R., Lipniacki, T.: Crosstalk between p53 and nuclear factor-kB systems: pro- and anti-apoptotic functions of NF-kB. IET Syst. Biol. 3(5), 356–367 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Jonak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jonak, K., Kurpas, M., PuszyƄski, K. (2014). Prediction of the Behavior of Mammalian Cells after Exposure to Ionizing Radiation Based on the New Mathematical Model of ATM-Mdm2-p53 Regulatory Pathway. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics