Skip to main content

Diabetes

  • Chapter
  • First Online:
Clinical Autonomic Dysfunction

Abstract

Diabetes has been discussed several times throughout the book. It is arguably one of the most researched chronic diseases regarding autonomic dysfunction. This body of data provides a strong basis for the systemic ways, in part via the autonomic nervous system, that diabetes affects multiple organ systems. This helps as a basis for a model of the autonomic effects of chronic disease in general and therefore as an example of many of the effects of autonomic dysfunction, due to chronic disease, on comorbidities and symptoms secondary to autonomic dysfunction. In this section we focus on diabetes specifically and hypoglycemia effects on the ANS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lishner M, Akselrod S, Avi VM, Oz O, Divon M, Ravid M. Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. J Auton Nerv Syst. 1987;19(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  2. Egan BM. Insulin resistance and the sympathetic nervous system. Curr Hypertens Rep. 2003;5:247–54.

    Article  PubMed  Google Scholar 

  3. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  4. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  5. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  6. Robertson D, Bisggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. 3rd ed. Waltham: Academic; 2012.

    Google Scholar 

  7. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine, 16th ed. New York, McGraw-Hill; 2003.

    Google Scholar 

  8. Saper CB. Autonomic disorders and their management. In: Cecil textbook of medicine, 22nd ed. Philadelphia, WB Saunders; 2003.

    Google Scholar 

  9. Low PA, editor. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  10. Handelsman Y, The AACE Task Force for Developing a Diabetes Comprehensive Care Plan. American Association of Clinical Endocrinologists medical guidelines for clinical practice for developing a diabetes mellitus comprehensive care plan. Endocr Pract. 2011;17 Suppl 2:1–53.

    Article  PubMed  Google Scholar 

  11. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    Article  PubMed  Google Scholar 

  12. American Diabetes Association. Standards of medical care in diabetes – 2013. Diabetes Care. 2013;36 Suppl 1:S11–66.

    Article  PubMed Central  Google Scholar 

  13. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis identifies early autonomic dysfunction that may lead to elevated blood pressure in diabetics. Diabetes Technology Conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  14. American Diabetes Association. Standards of medical care in diabetes – 2008. Diabetes Care. 2008;31 Suppl 1:S12–54.

    Article  Google Scholar 

  15. Malik M. The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  16. Malik M. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Article  Google Scholar 

  17. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    Article  CAS  PubMed  Google Scholar 

  18. Arora RR, Ghosh Dastidar S, Colombo J. Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai, 29 Oct–1 Nov 2008.

    Google Scholar 

  19. Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society meeting, Chicago. 3–7 May 2006.

    Google Scholar 

  20. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Article  Google Scholar 

  21. Lieb DC, Parson HK, Mamikunian G, Vinik AI. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetic Res. 2012;2012:1–8.

    Google Scholar 

  22. Maser RE, Lenhard MJ. Review: cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    Article  CAS  PubMed  Google Scholar 

  23. Vinik AI, Maser RE, Ziegler D. Neuropathy. The crystal ball for cardiovascular disease. Diabetes Care. 2010;33(7):1688–90.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Pereira E, Baker S, Bulgarelli RJ, Murray G, Arora RR, Colombo J. Gender differences in longevity and sympathovagal balance. Presented at the Cleveland Clinic Heart-Brain Summit, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, 23–24 Sept 2010.

    Google Scholar 

  25. Boyd GL, Taylor JA, Ovalle F, Stout DG, Aultman M, Garner VM, Morris RE, Witherspoon CD, Albert M, Vetter TR. Prevalence of advanced autonomic dysfunction in patients presenting for retinal surgery. Anesthesiology. Accepted 2014.

    Google Scholar 

  26. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  27. Boyd G, Stout D, Aultman M, Wyatt K, Vetter T. Are there reliable clinical predictors of cardiac autonomic neuropathy in diabetic patients? American Society of Anesthesiologists, annual meeting, San Diego, 16–20 Oct 2010.

    Google Scholar 

  28. Boyd G, Stout D, Morris R, Witherspoon CD, Vetter T. et al. Prevalence and severity of autonomic dysfunction in diabetic patients presenting for retinal Surgery American Society of Anesthesiologists, annual meeting, San Diego, 16–20 Oct 2010.

    Google Scholar 

  29. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article  CAS  PubMed  Google Scholar 

  30. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, huang GD. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  31. Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, Probstfield JL, Simons-Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  CAS  PubMed  Google Scholar 

  32. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth MS, Grimm RH, Corson MA, Prineas R, ACCORD Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Georges L-P. Mortality among persons with diabetes. Cambridge: Cambridge University Press; 1995.

    Google Scholar 

  35. Beck MO, Silveiro SP, Friedman R, Clausell N, Gross JL. Asymptomatic coronary artery disease is associated with cardiac autonomic neuropathy and diabetic nephropathy in type 2 diabetic patients. Diabetes Care. 1999;22:1745–7.

    Article  CAS  PubMed  Google Scholar 

  36. De Lorenzo A, Lima RS, Siqueira-Filho AG, Pantoja MR. Prevalence and prognostic value of perfusion defects detected by stress technetium-99 m sestamibi myocardial perfusion single-photon emission computed tomography in asymptomatic patients with diabetes mellitus and no known coronary artery disease. Am J Cardiol. 2002;90:827–32.

    Article  PubMed  Google Scholar 

  37. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn study. Diabetes Care. 2001;24:1793–8.

    Article  CAS  PubMed  Google Scholar 

  38. Astrup AS, Tarnow L, Rossing P, Hansen BV, Hilsted J, Parving HH. Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care. 2006;29:334–9.

    Article  PubMed  Google Scholar 

  39. Huang CJ, Kuok CH, Kuo TB, Hsu YW, Tsai PS. Pre-operative measurement of heart rate variability predicts hypotension during general anesthesia. Acta Anaesthesiol Scand. 2006;50:542–8.

    Article  PubMed  Google Scholar 

  40. Ciccarelli LL, Ford CM, Tsueda K. Autonomic neuropathy in a diabetic patient with renal failure. Anesthesiology. 1986;64:283–7.

    Article  CAS  PubMed  Google Scholar 

  41. Amour J, Kersten JR. Diabetic cardiomyopathy and anesthesia: bench to bedside. Anesthesiology. 2008;108:524–30.

    Article  PubMed  Google Scholar 

  42. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med. 2011;28:643–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Toyry JP, Niskanen LK, Mantysaari MJ, Lansimies EA, Uusitupa MI. Occurrence, predictors, and clinical significance of autonomic neuropathy in NIDDM. Ten-year follow-up from the diagnosis. Diabetes. 1996;45:308–15.

    Article  CAS  PubMed  Google Scholar 

  44. Arora RR, Iffrig K, Colombo J. Geriatric female longevity associated with elevated parasympathetic tone. Can the same be affected in geriatric males? Presented at the American Autonomic Society’s 17th International Symposium on the Autonomic Nervous System, Rio Grande. 1–4 Nov 2006.

    Google Scholar 

  45. Calles-Escandon J, Lovato L, Simons-Morton D, Kendell D, Pop-Busui R, Cohen R, Bonds D, Fonseca V, Ismail-Beigi F, Banerji M, Failor A, Hamilton B. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics. Diabetes Care. 2010;33:721–7.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  47. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Fourth annual Diabetes Technology meeting, Philadelphia, 28–30 Oct 2004.

    Google Scholar 

  48. Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes Technology Conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  49. Akinola A, Bleasdale-Barr K, Everall L, Mathias CJ. Investigation of autonomic disorders: appendix I. In: Mathias CJ, Bannister R, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. London: Oxford Medical Publications; 1999.

    Google Scholar 

  50. Dagogo-Jack SE, Craft S, Cryer PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus: recent antecedent hypoglycemia reduces autonomic responses to, symptoms, of, and defense against subsequent hypoglycemia. J Clin Invest. 1993;91:819–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Adler GK, Bonyhay I, Failing H, Waring E, Dotson S, Freeman R. Antecedent hypoglycemia impairs autonomic cardiovascular function: implications for rigorous glycemic control. Diabetes. 2009;58:360–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  53. Licht CM, Vreeburg SA, van Reedt Dortland AK, Giltay EJ, Hoogendijk WK, Derijk RH, Vogelzangs N, Zitman FG, de Geus EJ, Penninx BW. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab. 2010;95(5):2458–66.

    Google Scholar 

  54. Maser R, Mitchell B, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes, a meta analysis. Diabetes Care. 2003;26(6):1895–901.

    Article  PubMed  Google Scholar 

  55. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31:556–61.

    Article  PubMed  Google Scholar 

  56. Lykke JA, Tarnow L, Parving HH, Hilstead J. A combined abnormality in heart rate variation and QT corrected interval is a strong predictor of cardiovascular death in type 1 diabetes. Scand J Clin Lab Invest. 2008;68:654–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Diabetes. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics