Skip to main content

The Valence Band Structure of Gadolinium Studied with Time-Resolved Photoemission

  • Conference paper
  • First Online:
Ultrafast Magnetism I

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 159))

Abstract

We have studied the response of the exchange split valence bands of ferromagnetic gadolinium tofemtosecond laser excitation. We observe a drop of the exchange splitting with a time constant of 0.9 ps but different response times of minority and majority spin bands. Furthermore, even above the Curie temperature there is a finite exchange splitting, which also decreases with laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Beaurepaire, J.-C.Merle, A. Daunois, and J.-Y. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel” Phys. Rev. Lett. 76, 4250 (1996).

    Google Scholar 

  2. I. Radu et al., “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins” Nature 472, 205 (2011).

    Google Scholar 

  3. J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses” Nature Physics 5, 515 (2009).

    Google Scholar 

  4. M. Krauß et al., “Ultrafast demagnetization of ferromagnetic transition metals: The role of the Coulomb interaction” Phys. Rev. B 80, 180407 (2009).

    Google Scholar 

  5. B. Koopmans et al., “Explaining the paradoxical diversity of ultrafast laser-induced demagnetization” Nature Mater. 9, 259–265 (2010).

    Google Scholar 

  6. A.B. Schmidt et al., „Ultrafast Magnon Generation in an Fe Film on Cu(100)“ Phys. Rev. Lett. 105, 197401 (2010).

    Google Scholar 

  7. M. Battiato, K. Carva, and P. M. Oppeneer, “Superdiffusive Spin Transport as a Mechanism of Ultrafast Demagnetization” Phys. Rev. Lett.105, 027203 (2010).

    Google Scholar 

  8. A. J. Schellekens and B. Koopmans, “Comparing Ultrafast Demagnetization Rates Between Competing Models for Finite Temperature Magnetism” Phys. Rev. Lett. 110, 217204 (2013); K. Carva, M. Battiato, D. Legut, and P. M. Oppeneer, “Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets” Phys. Rev. B 87, 184425 (2013).

    Google Scholar 

  9. B. Frietsch et al., “A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy” Rev. Sci. Instrum.84 (2013), in press.

    Google Scholar 

  10. R. Carley et al., “Femtosecond Laser Excitation Drives Ferromagnetic Gadolinium out of magnetic Equilibrium” Phys. Rev. Lett. 109, 057401 (2012).

    Google Scholar 

  11. C. Schüßler-Langeheine, “Magnetic properties of thin films of heavy lanthanide metals studied by magnetic x-ray diffraction and high-resolution photoemission,” Ph.D. thesis, Fachbereich Physik, Freie Universität Berlin, 1999.

    Google Scholar 

  12. M. Sultan et al., “Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001)”, Phys. Rev. B 85, 184407 (2012).

    Google Scholar 

  13. M. Wietsruk et al., “Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by Femtosecond X-ray magnetic circular dichroism” Phys. Rev. Lett. 106, 127401 (2011).

    Google Scholar 

  14. M.Avignon and K.-H. Bennemann, http://arxiv.org/pdf/1305.5698.pdf.

  15. K. Maiti, M. C. Malagoli, A. Dallmeyer, and C. Carbone, “Finite Temperature Magnetism in Gd: Evidence against a Stoner Behavior” Phys Rev. Lett. 88, 167205 (2002).

    Google Scholar 

  16. M. Bode, M. Getzlaff, A. Kubetzka, R. Pascal, O. Pietzsch, and R. Wiesendanger, “Temperature-Dependent Exchange Splitting of a Surface Stateon a Local-Moment Magnet: Tb(0001)”, Phys. Rev. Lett. 83, 3017 (1999).

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft, the Leibniz graduate school D in L, and the Helmholtz Virtual Institute Dynamic Pathways in Multidimensional Landscapes. J.B. is indebted to the Humboldt Foundation for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Weinelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Frietsch, B., Bowlan, J., Carley, R., Teichmann, M., Wolter, J., Weinelt, M. (2015). The Valence Band Structure of Gadolinium Studied with Time-Resolved Photoemission. In: Bigot, JY., Hübner, W., Rasing, T., Chantrell, R. (eds) Ultrafast Magnetism I. Springer Proceedings in Physics, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-07743-7_85

Download citation

Publish with us

Policies and ethics