Skip to main content

Towing with Sailboat Robots

  • Conference paper
Robotic Sailing 2014

Abstract

Moving huge objects floating at the surface of the ocean (such as containers or icebergs) with boats requires many human operators and a lot of energy. This is mainly due to the fact that when humans operate such equipment, time is costly. Now, when we have time (as when robots operate, for instance), it is possible to move arbitrarily large objects, for over long distances, with a limited quantity of energy. This is a consequence of the fact that in the water, the friction forces are proportional to the square of the speed (i.e., when we go slowly, we have almost no friction). This paper proposes the use of a sailboat robot to tow large objects. It shows which control law could be used is order to (i) avoid loops inside the towing cable, (ii) avoid collisions between the robot and the towed object, and (iii) move the object toward the desired direction. The control law is validated on a simulation where the object to be towed has to follow a trajectory corresponding to a large circle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brière, Y.: The first microtransat challenge. ENSICA (2006), http://web.ensica.fr/microtransat

  2. Cabral, H.M.P., Alves, J.C., Cruz, N.A., Valente, J.F., Lopes, D.M.: MPL — A Mission Planning Language for Autonomous Surface Vehicles. In: Le Bars, F., Jaulin, L. (eds.) Robotic Sailing 2013, vol. 142, pp. 133–143. Springer, Heidelberg (2014)

    Google Scholar 

  3. Cabrera-Gámez, J., Isern-González, J., Hernández-Sosa, D., Domínguez-Brito, A.C., Fernández-Perdomo, E.: Optimization-Based Weather Routing for Sailboats. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 23–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Cruz, N., Alves, J.: Ocean sampling and surveillance using autonomous sailboats. In: International Robotic Sailing Conference, Austria (2008)

    Google Scholar 

  5. Erckens, H., Büsser, G., Pradalier, C., Siegwart, R.: Navigation Strategy and Trajectory Following Controller for an Autonomous Sailing Vessel. IEEE RAM 17, 47–54 (2010)

    Google Scholar 

  6. Fossen, T.: Guidance and Control of Ocean Vehicles. Wiley, New York (1995)

    Google Scholar 

  7. Gal, O.: Multi-agents Decision Making Concept for Multi-missions Applications in Marine Environments. In: Le Bars, F., Jaulin, L. (eds.) Robotic Sailing 2013, vol. 142, pp. 123–132. Springer, Heidelberg (2014)

    Google Scholar 

  8. Gorgues, T., Ménage, O., Terre, T., Gaillard, F.: An innovative approach of the surface layer sampling. Journal des Sciences Halieutique et Aquatique 4, 105–109 (2011)

    Google Scholar 

  9. Guillou, G.: Architecture multi-agents pour le pilotage automatique des voiliers de compétition et extensions algébriques des réseaux de petri. PhD dissertation, Université de Bretagne, Brest, France (2011)

    Google Scholar 

  10. Herrero, P., Jaulin, L., Vehi, J., Sainz, M.A.: Guaranteed set-point computation with application to the control of a sailboat. International Journal of Control Automation and Systems 8(1), 1–7 (2010)

    Article  Google Scholar 

  11. Jaulin, L.: Représentation d’état pour la modélisation et la commande des systèmes (Coll. Automatique de base). Hermès, London (2005)

    Google Scholar 

  12. Jaulin, L., Le Bars, F.: A simple controller for line following of sailboats. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 117–130. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Jaulin, L., Le Bars, F.: An Interval Approach for Stability Analysis; Application to Sailboat Robotics. IEEE Transaction on Robotics 27(5) (2012)

    Google Scholar 

  14. Jaulin, L., Le Bars, F.: Sailboat as a windmill. In: Le Bars, F., Jaulin, L. (eds.) Robotic Sailing 2013, vol. 142, pp. 79–89. Springer, Heidelberg (2014)

    Google Scholar 

  15. Klinck, H., Stelzer, R., Jafarmadar, K., Mellinger, D.K.: AAS Endurance: An Autonomous Acoustic Sailboat for Marine Mammal Research. In: 2th International Robotic Sailing Conference, Matosinhos, Portugal (2009)

    Google Scholar 

  16. Langbein, J., Stelzer, R., Frühwirth, T.: A Rule-Based Approach to Long-Term Routing for Autonomous Sailboats. In: Schlaefer, A., Blaurock, O. (eds.) Robotic Sailing, vol. 79, pp. 195–204. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Le Bars, F., Jaulin, L.: An experimental validation of a robust controller with the VAIMOS autonomous sailboat. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 73–84. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Miller, P., Sauzé, C., Neal, M.: Development of ARRTOO: A Long-Endurance, Hybrid-Powered, Oceanographic Research Vessel. In: Le Bars, F., Jaulin, L. (eds.) Robotic Sailing 2013, vol. 142, pp. 53–64. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  19. Miller, P.H., Hamlet, M., Rossman, J.: Continuous improvements to USNA sailbots for inshore racing and offshore voyaging. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 49–60. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Neumann, T., Schlaefer, A.: Feasibility of basic visual navigation for small robotic sailboats. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 13–22. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Petres, C., Ramirez, M.R., Plumet, F.: Reactive Path Planning for Autonomous Sailboat. In: IEEE International Conference on Advanced Robotics, pp. 1–6 (2011)

    Google Scholar 

  22. Sauze, C., Neal, M.: An Autonomous Sailing Robot for Ocean Observation. In: Proceedings of TAROS 2006, Guildford, UK, pp. 190–197 (2006)

    Google Scholar 

  23. Schmitt, S., Le Bars, F., Jaulin, L., Latzel, T.: Obstacle Avoidance for an Autonomous Marine Robot - A Vector Field Approach. In: 7th International Robotic Sailing Conference. Springer, Irland (2014)

    Google Scholar 

  24. Stelzer, R., Dalmau, D.E.: A study on potential energy savings by the use of a balanced rig on a robotic sailing boat. In: Sauze, C., Finnis, J. (eds.) Robotic Sailing 2012, vol. 121, pp. 87–93. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Stelzer, R., Jafarmadar, K.: The Robotic Sailing Boat ASV Roboat as a Maritime Research Platform. In: Proceedings of 22nd International HISWA Symposium on Yacht Design and Yacht Construction, Amsterdam, The Netherlands (2012)

    Google Scholar 

  26. Stelzer, R., Proll, T., John, R.: Fuzzy Logic Control System for Autonomous Sailboats. In: Proceedings of IEEE International Conference on Fuzzy Systems, London, UK (2007)

    Google Scholar 

  27. Xiao, K., Sliwka, J., Jaulin, L.: A wind-independent control strategy for autonomous sailboats based on voronoi diagram. In: CLAWAR 2011 (best paper award), Paris (2011)

    Google Scholar 

  28. Xiao, L., Jouffroy, J.: Modeling and nonlinear heading control of sailing yachts. IEEE Journal of Oceanic Engineering (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Jaulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jaulin, L., Le Bars, F. (2015). Towing with Sailboat Robots. In: Morgan, F., Tynan, D. (eds) Robotic Sailing 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-10076-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10076-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10075-3

  • Online ISBN: 978-3-319-10076-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics