Skip to main content

Physical Layer Security: A Paradigm Shift in Data Confidentiality

  • Conference paper
  • First Online:
Physical and Data-Link Security Techniques for Future Communication Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 358))

Abstract

Physical layer security (PLS) draws on information theory to characterize the fundamental ability of the wireless physical layer to ensure data confidentiality. In the PLS framework it has been established that it is possible to simultaneously achieve reliability in transmitting messages to an intended destination and perfect secrecy of those messages with respect to an eavesdropper by using appropriate encoding schemes that exploit the noise and fading effects of wireless communication channels. Today, after more than 15 years of research in the area, PLS has the potential to provide novel security solutions that can be integrated into future generations of mobile communication systems. This chapter presents a tutorial on advances in this area. The treatment begins with a review of the fundamental PLS concepts and their corresponding historical background. Subsequently it reviews some of the most significant advances in coding theory and system design that offer a concrete platform for the realization of the promise of this approach in data confidentiality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The channel prefixing random variable U accounts for randomness introduced in the encoding process.

References

  1. Ahlswede R, Csiszàr I (1993) Common randomness in information theory and cryptography-part I: secret sharing. IEEE Trans Inf Theory 39(4):1121–1132

    Article  MATH  Google Scholar 

  2. Bassily R, Ekrem E, He X, Tekin E, Xie J, Bloch MR, Ulukus S, Yener A (2013) Cooperative security at the physical layer: a summary of recent advances. IEEE Signal Process Mag 30(5):16–28

    Article  Google Scholar 

  3. Bennett CH, Brassard G, Crépeau C, Maurer UM (1995) Generalized privacy amplification. IEEE Trans Inf Theory 50(2):394–400

    Google Scholar 

  4. Chorti A, Perlaza SM, Han Z, Poor V (2013) On the resilience of wireless multiuser networks to passive and active eavesdroppers. IEEE J Sel Areas Commun 31(9):1850–1863

    Google Scholar 

  5. Chorti A, Papadaki KP, Poor HV (2015) Optimal power allocation in block fading channels with confidential messages. IEEE Trans Wirel Commun (to appear)

    Google Scholar 

  6. Csiszár I, Körner J (1978) Broadcast channels with confidential messages. IEEE Trans Inf Theory 24(3):339–348

    Article  MATH  Google Scholar 

  7. Dean T, Goldsmith A (2013) Physical-layer cryptography through massive MIMO. arXiv:1310.1861 [cs.IT], submitted to IEEE Transactions on Information Theory

  8. Ekrem E, Ulukus S (2011) The secrecy capacity of the Gaussian MIMO multi-receiver wiretap channel. IEEE Trans Inf Theory 57(4):2083–2114

    Article  MathSciNet  Google Scholar 

  9. Gopala P, Lai L, El-Gamal H (2008) On the secrecy capacity of fading channels. IEEE Trans Inf Theory 54(10):4687–4698

    Article  MATH  MathSciNet  Google Scholar 

  10. He X, Yener A (2010) Cooperation with an untrusted relay: a secrecy perspective. IEEE Trans Inf Theory 56(8):3807–3827

    Article  MathSciNet  Google Scholar 

  11. Katz J, Lindell Y (2007) Introduction to modern cryptography. CRC Press Inc., Boca Raton

    Google Scholar 

  12. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part I: the MISOME wiretap channel. IEEE Trans Inf Theory 56(7):3088–3104

    Article  MathSciNet  Google Scholar 

  13. Khisti A, Wornell GW (2010) Secure transmission with multiple antennas-part II: the MIMOME wiretap channel. IEEE Trans Inf Theory 56(11):5515–5532

    Article  MathSciNet  Google Scholar 

  14. Koyluoglu O, El Gamal H, Lai L, Poor HV (2011) Interference alignment for secrecy. IEEE Trans Inf Theory 57(6):3323–3332

    Article  Google Scholar 

  15. Lai L, El Gamal H, Poor HV (2009) Authentication over noisy channels. IEEE Trans Inf Theory 55(2):906–916

    Article  Google Scholar 

  16. Leung-Yan-Cheong SK, Hellman ME (1978) The Gaussian wire-tap channel. IEEE Trans Inf Theory 24(4):451–456

    Article  MATH  MathSciNet  Google Scholar 

  17. Liang Y, Poor HV (2008) Multiple-access channels with confidential messages. IEEE Trans Inf Theory 54(3):976–1002

    Article  MATH  MathSciNet  Google Scholar 

  18. Liang Y, Poor HV, Shamai S (2008) Secure communication over fading channels. IEEE Trans Inf Theory 54(6):2470–2492

    Article  MATH  MathSciNet  Google Scholar 

  19. Ling C, Luzzi L, Belfiore J-C, Stehle D (2014) Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Trans Inf Theory 60(10):6399–6416

    Article  MathSciNet  Google Scholar 

  20. Liu R, Liu T, Poor HV, Shamai S (2013) New results on multiple-input multiple-output broadcast channels with confidential messages. IEEE Trans Inf Theory 59(3):1346–1359

    Article  MathSciNet  Google Scholar 

  21. Mahdavifar H, Vardy A (2011) Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans Inf Theory 57(10):6428–6442

    Article  MathSciNet  Google Scholar 

  22. Maurer UM (1993) Secret key agreement by public discussion from common information. IEEE Trans Inf Theory 39(3):733–742

    Article  MATH  Google Scholar 

  23. Maurer UM, Renner R, Wolf S (2007) Unbreakable keys from random noise, Security with Noisy Data. Springer, New York, pp 21–44

    Google Scholar 

  24. Oggier F, Hassibi B (2011) The secrecy capacity of the MIMO wiretap channel. IEEE Trans Inf Theory 57(8):4961–4972

    Article  MathSciNet  Google Scholar 

  25. Oggier F, Solé P, Belfiore J-C (2011) Lattice codes for the wiretap Gaussian channel: construction and analysis. arXiv:1103.4086v3 [cs.IT]

  26. Oohama Y (2001) Coding for relay channels with confidential messages. In: Proceedings of the information theory workshop (ITW) (Cairns, Australia), pp 87–89

    Google Scholar 

  27. Oohama Y (2007) Capacity theorems for relay channels with confidential messages. In: IEEE International Symposium on Information Theory—ISIT 2007 (Nice, France), pp 926–930

    Google Scholar 

  28. Ozarow L, Wyner A (1985) Wire-tap channel II. Advances in Cryptology, Lecture Notes in Computer Science vol. 209. Springer, New York, pp 33–50

    Google Scholar 

  29. Renna F, Laurenti N, Poor HV (2012) Physical layer secrecy for OFDM transmissions over fading channels. IEEE Trans Inf Forensics Secur 7(4):1354–1367

    Google Scholar 

  30. Renna F, Laurenti N, Tomasin S, Baldi M, Maturo N, Bianchi M, Chiaraluce F, Bloch M (2013) Low-power secret-key agreement over OFDM, CoRR abs/1302.4767

    Google Scholar 

  31. Saad W, Zhou X, Han Z, Poor HV (2014) On the physical layer security of backscatter wireless systems. IEEE Trans Wirel Commun 13(6):3442–3451

    Article  Google Scholar 

  32. Shannon C (1949) Communication theory of secrecy systems. Bell Syst Tech J 28:656–715

    Article  MATH  MathSciNet  Google Scholar 

  33. Tang X, Liu R, Spasojevic P, Poor HV (2011) Interference assisted secret communication. IEEE Trans Inf Theory 57(5):3153–3167

    Article  MathSciNet  Google Scholar 

  34. Thangaraj A, Dihidar S, Calderbank A, McLaughlin S, Merolla J-M (2007) Applications of LDPC codes to the wiretap channel. IEEE Trans Inf Theory 53(8):2933–2945

    Article  MathSciNet  Google Scholar 

  35. Wyner AD (1975) The wire-tap channel. Bell Syst Tech J 54(8):1355–1387

    Article  MATH  MathSciNet  Google Scholar 

  36. Xiangyun Z, Maham B, Hjorungnes A (2012) Pilot contamination for active eavesdropping. IEEE Trans Wirel Commun 11(3):903–907

    Article  Google Scholar 

  37. Yang S, Kobayashi M, Piantanida P, Shamai S (2013) Secrecy degrees of freedom of MIMO broadcast channels with delayed CSIT. IEEE Trans Inf Theory 59(9):5244–5256

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The financial support from the Academy of Finland (grants #276031, #282938, #283262) and Magnus Ehrnrooth Foundation is gratefully acknowledged. Part of this work was carried out under the European Science Foundation’s COST Action IC1104. This work was also supported by the U.S. National Science Foundation Grant CMMI-1435778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arsenia Chorti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chorti, A., Hollanti, C., Belfiore, JC., Poor, H.V. (2016). Physical Layer Security: A Paradigm Shift in Data Confidentiality. In: Baldi, M., Tomasin, S. (eds) Physical and Data-Link Security Techniques for Future Communication Systems. Lecture Notes in Electrical Engineering, vol 358. Springer, Cham. https://doi.org/10.1007/978-3-319-23609-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23609-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23608-7

  • Online ISBN: 978-3-319-23609-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics