Skip to main content

Ecological Intensification: Local Innovation to Address Global Challenges

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Abstract

The debate on future global food security is centered on increasing yields. This focus on availability of food is overshadowing access and utilization of food, and the stability of these over time. In addition, pleas for increasing yields across the board overlook the diversity of current positions and contexts in which local agriculture functions. And finally, the actual model of production is based on mainstream agricultural models in industrialized societies, in which ecological diversity and benefits from nature have been ignored or replaced by external inputs. The dependence upon external inputs should exacerbate the negative impacts on the environment and on social equity. Strategies to address future global food security thus require local innovation to increase agricultural production in a sustainable, affordable way in the poorest regions of the world, and to reduce the environmental impact of agriculture and its dependence on non-renewable resources. Ecological intensification, the smart use of biodiversity-mediated ecosystem functions to support agricultural production, is portrayed as the most promising avenue to achieve these goals.

Here we first review examples of ecological intensification from around the world. Functional diversity at plant, field and regional scales is shown to hold promise for reducing pesticide need in potato production in the Netherlands, increasing beef production on the pampas and campos in south-east South-America without additional inputs, and staple crop production in various regions in Africa. Strategies range from drawing on high-tech breeding programs to mobilizing and enriching local knowledge and customs of maintaining perennials in annual production systems. Such strategies have in common that larger spatial scales of management, such as landscapes, provide important entry points in addition to the field level.

We then argue that the necessary innovation system to support transitions towards ecological intensification and to anchor positive changes should be built from a hybridization of approaches that favour simultaneously bottom-up processes, e.g. developing niches in which experiments with ecological intensification develop, and top-down processes: changing socio-technical regimes which represent conventional production systems through targeted policies. We show that there are prospects for drawing on local experiences and innovation platforms that foster co-learning and support co-evolution of ecological intensification options in specific contexts, when connected with broader change in the realm of policy systems and value chains. This would require dedicated system innovation programmes that connect local and global levels to sustainably anchor change towards ecological intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Carvalho et al. (2011) also describe possible next intensification steps which all involve using external inputs, such as liming to increase pH, and N, P and K fertilizers and to replace native species by exotic, high production species in sown pastures. While this will substantially increase meat production levels, it will imply sacrificing the ecosystem services associated with the natural grasslands and making livestock production more vulnerable to climate change.

  2. 2.

    While this proposition raises eyebrows in the potato sector, regional coordination among Dutch farmers on mowing regimes of grasslands for bird protection has proven to be possible and fruitful (Schekkerman et al. 2008).

References

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5:309–313

    Article  CAS  PubMed  Google Scholar 

  • Aguerre V, Albicette M, Ruggia A, Scarlato S (2015) Co-innovation of family farm systems: developing sustainable livestock production systems based on natural grasslands. In: 5th international symposium on farming systems design, Montpellier, 7–10 Sept 2015

    Google Scholar 

  • Alliaume F, Rossing WAH, García M, Giller KE, Dogliotti S (2013) Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms. Eur J Agron 46:10–19

    Article  CAS  Google Scholar 

  • Andrieu N, Vayssières J, Corbeels M, Blanchard M, Vall E, Tittonell P (2015) From synergies at farm scale to trade-offs at village scale: the use of cereal crop residues in an agro-pastoral system of the Sudanian zone of Burkina Faso. Agric Syst 134:84–96

    Article  Google Scholar 

  • Andrivon D, Lucas JM, Ellisseche D (2003) Development of natural late blight epidemics in pure and mixed plots of potato cultivars with different levels of partial resistance. Plant Pathol 52:586–594

    Article  Google Scholar 

  • Asefa DT, Oba G, Weladji RB, Colman JE (2003) An assessment of restoration of biodiversity in degraded high mountain grazing lands in northern Ethiopia. Land Degrad Dev 14:25–38

    Article  Google Scholar 

  • Balmford A, Green R, Phalan B (2012) What conservationists need to know about farming. Proc R Soc B Biol Sci 279:2714–2724, rspb20120515

    Article  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878

    Article  CAS  Google Scholar 

  • Barthès BG, Penche A, Hien E, Deleporte P, Clermont-Dauphin C, Cournac L, Manlay RJ (2014) Effect of ramial wood amendment on sorghum production and topsoil quality in a Sudano-Sahelian ecosystem (central Burkina Faso). Agrofor Syst 89(1):81–93

    Article  Google Scholar 

  • Baudron F, Giller KE (2014) Agriculture and nature: trouble and strife? Biol Conserv 170:232–245

    Article  Google Scholar 

  • Baudron F, Mamo A, Tirfessa D, Argaw M (2015) Impact of farmland exclosure on the productivity and sustainability of a mixed crop-livestock system in the Central Rift Valley of Ethiopia. Agric Ecosyst Environ 207:109–118. doi:10.1016/j.agee.2015.04.003

    Article  Google Scholar 

  • Blesh J, Wolf S (2014) Transitions to agroecological farming systems in the Mississippi River Basin: toward an integrated socioecological analysis. Agric Hum Values 31(4):621–635

    Article  Google Scholar 

  • Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28:230–238

    Article  PubMed  Google Scholar 

  • Bonhommeau S, Dubroca L, Le Pape O, Barde J, Kaplan DM, Chassot E, Nieblas A-E (2013) Eating up the world’s food web and the human trophic level. Proc Natl Acad Sci U S A 110(51):20617–20620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bos AP, Groot Koerkamp PWG, Gosselink JMJ, Bokma S (2009) Reflexive interactive design and its application in a project on sustainable dairy husbandry systems. Outlook Agric 38:137–145

    Article  Google Scholar 

  • Bousset L, Chèvre A-M (2013) Stable epidemic control in crops based on evolutionary principles: adjusting the metapopulation concept to agro-ecosystems. Agric Ecosyst Environ 165:118–129

    Article  Google Scholar 

  • Bouws H, Finckh MR (2008) Effects of strip intercropping of potatoes with non-hosts on late blight severity and tuber yield in organic production. Plant Pathol 57:916–927

    Article  Google Scholar 

  • Bretagnolle V, Villers A, Denonfoux L, Cornulier T, Inchausti P, Badenhausser I (2011) Rapid recovery of a depleted population of Little Bustards Tetrax tetrax following provision of alfalfa through an agri-environment scheme. Ibis 153:4–13

    Article  Google Scholar 

  • Brooks S, Loevinsohn M (2011) Shaping agricultural innovation systems responsive to food insecurity and climate change. Nat Res Forum 35:185–200

    Article  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2002) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Article  Google Scholar 

  • Brussaard L, Caron P, Campbell B, Lipper L, Mainka S, Rabbinge R, Babin D, Pulleman M (2010) Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr Opin Environ Sustain 2:34–42

    Article  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  Google Scholar 

  • Caron P, Biénabe E, Hainzelin E (2014) Making transition towards ecological intensification of agriculture a reality: the gaps in and the role of scientific knowledge. Curr Opin Environ Sustain 8:44–52

    Article  Google Scholar 

  • Carvalho PCF, Nabinger C, Lemaire G, Genro TC (2011) Challenges and opportunities for livestock production in natural pastures: the case of Brazilian Pampa Biome. In: Feldman S, Oliva GE, Sacido MB (eds) Proceedings of the IX international rangeland congress: diverse rangelands for a sustainable society, Rosario, Argentina. Fundación Argentina, Buenos Aires, pp 9–15

    Google Scholar 

  • Cassidy ES, West PC, Gerber JS, Foley JA (2013) Redefining agricultural yields: from tonnes to people nourished per hectare. Environ Res Lett 8:034015. doi:10.1088/1748-9326/8/3/034015 (8pp)

    Article  Google Scholar 

  • Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci U S A 96:5952–5959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • CBS (2014) Central Bureau of Statistics, http://statline.cbs.nl/StatWeb/publication/?DM=SLNL&PA=37995&D1=2-3&D2=2&D3=11,17,24&D4=a&VW=T. Accessed 22 Sept 2014

  • Chantre E, Cardona A (2013) Trajectories of French field crop farmers moving toward sustainable farming practices: change, learning, and links with the advisory services. Agroecol Sustain Food Syst 38:573–602

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Dwi Putrak D, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Christian Wielgoss A, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci 108(20):8311–8316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coenen L, Benneworth P, Truffer B (2012) Toward a spatial perspective on sustainability transitions. Res Policy 41:968–979

    Article  Google Scholar 

  • Corral-Nuñez G, Opazo-Salazar D, GebreSamuel G, Tittonell P, Gebretsadik A, Gebremeskel Y, Tesfay G, van Beek CL (2014) Soil organic matter in Northern Ethiopia, current level and predicted trend: a study case of two villages in Tigray. Soil Use Manag 30:487–495

    Article  Google Scholar 

  • Cullen B, Tucker J, Snyder K, Lema Z, Duncan A (2014) An analysis of power dynamics within innovation platforms for natural resource management. Innov Dev 4:259–275

    Article  Google Scholar 

  • Darnhofer I, Lindenthal T, Bartel-Kratochvil R, Zollitsch W (2010) Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron Sustain Dev 30:67–81

    Article  Google Scholar 

  • Descheemaeker K, Nyssen J, Poesen J, Raes D, Haile M, Muys B, Deckers S (2006) Runoff on slopes with restoring vegetation: a case study from the Tigray highlands, Ethiopia. J Hydrol 331:219–241

    Article  Google Scholar 

  • Diack M, Sene M, Badiane AN, Diatta M, Dick RP (2000) Decomposition of a Native Shrub, Piliostigma reticulatum. Litter in soils of semiarid Senegal. Arid Soil Res Rehabil 14:205–218

    Google Scholar 

  • Diaz Anadon L, Matus K, Moon S, Chan G, Harley A, Murthy S, Timmer V, Abdel Latif A, Araujo K, Booker K, Choi H, Dubrawski K, Friedlander L, Ingersoll C, Kempster E, Pereira L, Stephens J, Vinsel L, Clark W (2014) Innovation and access to technologies for sustainable development: diagnosing weaknesses and identifying interventions in the transnational arena. Sustainability Science Program working paper 2014–01. Sustainability Science Program and Belfer Center for Science and International Affairs, Kennedy School of Government, Harvard University, Cambridge, MA

    Google Scholar 

  • Dogliotti S, García MC, Peluffo S, Dieste JP, Pedemonte AJ, Bacigalupe GF, Scarlato M, Alliaume F, Alvarez J, Chiappe M, Rossing WAH (2014) Co-innovation of family farm systems: a systems approach to sustainable agriculture. Agr Syst 126:76–86

    Article  Google Scholar 

  • Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210

    Article  Google Scholar 

  • Dossa EL, Diedhiou I, Khouma M, Sene M, Badiane AN, Ndiaye Samba SA, Assigbetse KB, Sall S, Lufafa A, Kizito F, Dick RP, Saxena J (2013) Crop productivity and nutrient dynamics in a shrub-based farming system of the Sahel. Agron J 105:1237

    Article  CAS  Google Scholar 

  • DuPont ST, Culman SW, Ferris H, Buckley DH, Glover JD (2010) No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric Ecosyst Environ 137:25–32

    Article  CAS  Google Scholar 

  • Duru M, Fares M, Therond O (2014) A conceptual framework for thinking now (and organising tomorrow) the agroecological transition at the level of the territory. Cah Agric 23:84–95

    Google Scholar 

  • Elzen B, Barbier M, Cerf M, Grin J (2012a) Stimulating transitions towards sustainable farming systems. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Dordrecht, pp 431–455

    Chapter  Google Scholar 

  • Elzen B, van Mierlo B, Leeuwis C (2012b) Anchoring of innovations: assessing Dutch efforts to harvest energy from glasshouses. Environ Innov Soc Transit 5:1–18

    Article  Google Scholar 

  • Erenstein O, Sayre K, Wall P, Dixon J, Hellin J (2008) Adapting no-tillage agriculture to the conditions of smallholder maize and wheat farmers in the tropics and sub-tropics. In: Goddard T, Zoebisch M, Gan Y, Ellis W, Watson A, Sombatpanit S (eds) No-till farming systems. World Association of Soil and Water Conservation (WASWC), Bangkok, pp 253–278

    Google Scholar 

  • Evans R (1998) The erosional impacts of grazing animals. Prog Phys Geogr 22:251–268

    Google Scholar 

  • FAO (2012) Save and grow report. FAO, Rome

    Google Scholar 

  • FAO (2014) FAO stats repository. FAO, Rome

    Google Scholar 

  • Farla J, Markard J, Raven R, Coenen L (2012) Sustainability transitions in the making: a closer look at actors, strategies and resources. Technol Forecast Soc Chang 79:991–998

    Article  Google Scholar 

  • Félix GF, Douzet JM, Ouédraogo M, Belliard P, Lahmar R, Clermont-Dauphin C, Scholberg J, Tittonell P, Cournac L (2015). Ecosystem services for West African farming systems: the role of woody shrub mulch. Accepted in the 5th international symposium for farming systems design, Montpellier, 7–10 Sept 2015

    Google Scholar 

  • Finckh MR, Hayer F, Schulte-Geldermann E, Bruns C (2008) Diversity, plant nutrition and prognosis: an integrated concept for late blight management in organic agriculture. Gesunde Pflanzen 60:159–170

    Article  Google Scholar 

  • Fischer ARH, Beers PJ, Latesteijn HV, Andeweg K, Jacobsen E, Mommaas H, Van Trijp HCM, Veldkamp A (2012) Transforum system innovation towards sustainable food. A review. Agron Sustain Dev 32:595–608

    Article  Google Scholar 

  • Fonte SJ, Vanek SJ, Oyarzun P, Parsa S, Quintero DC, Rao IM, Lavelle P (2012) Pathways to agroecological intensification of soil fertility management by smallholder farmers in the Andean highlands. Adv Agron 116:125–184

    Article  CAS  Google Scholar 

  • Foran T, Butler JRA, Williams LJ, Wanjura WJ, Hall A, Carter L, Carberry PS (2014) Taking complexity in food systems seriously: an interdisciplinary analysis. World Dev 61:85–101

    Article  Google Scholar 

  • Franzel S, Denning GL, Lilles JPB, Mercado AR Jr (2004) Scaling up the impact of agroforestry: lessons from three sites in Africa and Asia. In New Vistas in agroforestry. Springer, Dordrecht, pp 329–344

    Google Scholar 

  • Franzluebbers AJ, Stuedemann JA (2009) Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agric Ecosyst Environ 129:28–36

    Article  CAS  Google Scholar 

  • Freebairn DK (1995) Did the green revolution concentrate incomes? A quantitative study of research reports. World Dev 23:265–279

    Article  Google Scholar 

  • Fressoli M, Arond E, Abrol D, Smith A, Ely A, Dias R (2014) When grassroots innovation movements encounter mainstream institutions: implications for models of inclusive innovation. Innov Dev 4:277–292

    Article  Google Scholar 

  • Friis-Hansen E, Duveskog D (2011) The empowerment route to well-being: an analysis of farmer field schools in East Africa. World Dev 40:414–427

    Article  Google Scholar 

  • Fünfschilling L, Truffer B (2013) The structuration of socio-technical regimes-conceptual foundations from institutional theory. Res Policy 43:772–791

    Article  Google Scholar 

  • Geels FW, Schot J (2007) Typology of sociotechnical transition pathways. Res Policy 36:399–417

    Article  Google Scholar 

  • Geels FW, Hekkert MP, Jacobsson S (2008) The dynamics of sustainable innovation journeys. Tech Anal Strat Manag 20:521–536

    Article  Google Scholar 

  • Geiger F, Bengtsson J, Berendse F, Weisser WW, Emmerson M, Morales MB, Ceryngier P, Liira J, Tscharntke T, Winqvist C et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105

    Article  CAS  Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    Article  CAS  PubMed  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Kamou S, Zody MC, Jiang RHY, Handsaker RE et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398

    Article  CAS  PubMed  Google Scholar 

  • Hadgu KM, Kooistra L, Rossing WAH, Van Bruggen AHC (2009) Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Secur 1:337–350

    Article  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plant stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hatfield PG, Lenssen AW, Spezzano TM, Blodgett SL, Goosey HB, Kott RW, Marlow CB (2007a) Incorporating sheep into dryland grain production systems I. Impact on over-wintering larva populations of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae). Small Rumin Res 67:09–215

    Article  Google Scholar 

  • Hatfield PG, Lenssen AW, Spezzano TM, Blodgett SL, Goosey HB, Kott RW, Marlow CB (2007b) Incorporating sheep into dryland grain production systems II. Impact on changes in biomass and weed density. Small Rumin Res 67:216–221

    Article  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Visser RGF, van der Vossen EAG (2008) Societal costs of late blight in potato and prospects of durable resistance through cisgenic modification. Potato Res 51:47–57

    Article  Google Scholar 

  • Hiernaux P, Turner MD (1996) The effect of clipping on growth and nutrient uptake of Sahelian annual rangelands. J Appl Ecol 33:387–399

    Article  Google Scholar 

  • Holtz G, Brugnach M, Pahl-Wostl C (2008) Specifying “regime” – a framework for defining and describing regimes in transition research. Tech Forecast Soc Chang 75:623–643

    Article  Google Scholar 

  • Horlings LG, Marsden TK (2011) Towards the real green revolution? Exploring the conceptual dimensions of a new ecological modernisation of agriculture that could ‘feed the world’. Glob Environ Chang 21:441–452

    Article  Google Scholar 

  • Hounkonnou D, Kossou D, Kuyper TW, Leeuwis C, Nederlof ES, Röling N, Sakyi-Dawson O, Traoré M, Van Huis A (2012) An innovation systems approach to institutional change: smallholder development in West Africa. Agr Syst 108:74–83

    Article  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    Article  CAS  PubMed  Google Scholar 

  • Hurni H (1988) Degradation and conservation of the resources in the Ethiopian highlands. Mt Res Dev 8:123–130

    Article  Google Scholar 

  • IAASTD (2009) International assessment of agricultural knowledge, science and technology for development: synthesis report with executive summary: a synthesis of the global and sub-global IAASTD reports. In: Beverly D. McIntyre, et al. Island Press, Washington, DC

    Google Scholar 

  • Khumairoh U, Groot JCJ, Lantinga EA (2012) Complex agro-ecosystems for food security in a changing climate. Ecol Evol 2(7):1696–1704. doi:10.1002/ece3.271

    Article  PubMed Central  PubMed  Google Scholar 

  • Kilelu CW, Klerkx L, Leeuwis C (2013) Unravelling the role of innovation platforms in supporting co-evolution of innovation: contributions and tensions in a smallholder dairy development programme. Agr Syst 118:65–77

    Article  Google Scholar 

  • Kirwan J, Ilbery B, Maye D, Carey J (2013) Grassroots social innovations and food localisation: an investigation of the local food programme in England. Glob Environ Chang 23:830–837

    Article  Google Scholar 

  • Kizito F, Dragila MI, Senè M, Brooks JR, Meinzer FC, Diedhiou I, Diouf M, Lufafa A, Dick RP, Selker J, Cuenca R (2012) Hydraulic redistribution by two semi-arid shrub species: implications for Sahelian agro-ecosystems. J Arid Environ 83:69–77

    Article  Google Scholar 

  • Klerkx L, Jansen J (2010) Building knowledge systems for sustainable agriculture: supporting private advisors to adequately address sustainable farm management in regular service contacts. Int J Agric Sustain 8:148–163

    Article  Google Scholar 

  • Klerkx L, Nettle R (2013) Achievements and challenges of innovation co-production support initiatives in the Australian and Dutch dairy sectors: a comparative study. Food Policy 40:74–89

    Article  Google Scholar 

  • Klerkx L, Aarts N, Leeuwis C (2010) Adaptive management in agricultural innovation systems: the interactions between innovation networks and their environment. Agr Syst 103:390–400

    Article  Google Scholar 

  • Klerkx L, Mierlo B, Leeuwis C (2012) Evolution of systems approaches to agricultural innovation: concepts, analysis and interventions. In: Darnhofer I, Gibbon D, Dedieu B (eds) Farming systems research into the 21st century: the new dynamic. Springer, Dordrecht, pp 457–483

    Chapter  Google Scholar 

  • Klerkx L, Adjei-Nsiah S, Adu-Acheampong R, Saïdou A, Zannou ET, Soumano L, Sakyi-Dawson O, Van Paassen A, Nederlof S (2013) Looking at agricultural innovation platforms through an innovation champion lens. An analysis of three cases in West Africa. Outlook Agric 42:185–192

    Article  Google Scholar 

  • Koning NBJ (2013) The evolution of farm policies: a long-term global perspective. In: Moser P, Varley T (eds) Integration through subordination; the politics of agricultural modernisation in industrial Europe. Brepols, Turnhout, pp 41–63 (Rural History in Europe 8). ISBN 9782503545295

    Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17:40

    Google Scholar 

  • Lahmar R, Bationo BA, Dan Lamso N, Guéro Y, Tittonell P (2012) Tailoring conservation agriculture technologies to West Africa semi-arid zones: building on traditional local practices for soil restoration. Field Crop Res 132:158–167

    Article  Google Scholar 

  • Lal R (1988) Soil degradation and the future of agriculture in sub-Saharan Africa. J Soil Water Conserv 43:444–451

    Google Scholar 

  • Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci USA 108:3465–3472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lamine C (2011) Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. J Rural Stud 27:209–219

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193

    Article  Google Scholar 

  • Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C (2013) Eco-evolutionary dynamics of agricultural networks: implications for sustainable management. Ecol Netw Agric World 49:339–435

    Article  Google Scholar 

  • Malézieux E (2012) Designing cropping systems from nature. Agron Sustain Dev 32:15–29

    Article  Google Scholar 

  • Manzeke GM, Mapfumo P, Mtambanengwe F, Chikowo R, Tendayi T, Cakmak I (2012) Soil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of Zimbabwe. Plant and Soil 361:57–69

    Article  CAS  Google Scholar 

  • Manzeke GM, Mtambanengwe F, Nezomba H, Mapfumo P (2014) Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crops Res 166:128–136. doi:10.1016/j.fcr.2014.05.019

    Article  Google Scholar 

  • Mapfumo P, Giller KE (2001) Soil fertility management strategies and practices by smallholder farmers in semi-arid areas of Zimbabwe. P.O. Box 776: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) with permission from the Food and Agriculture Organization of the United Nations (FAO), Bulawayo, p 60

    Google Scholar 

  • Mapfumo P, Campbell BM, Mpepereki S, Mafongoya P (2001) Legumes in soil fertility management: the case of pigeonpea in smallholder farming systems of Zimbabwe. Afr Crop Sci J 9:629–644

    Article  Google Scholar 

  • Mapfumo P, Mtambanengwe F, Giller KE, Mpepereki S (2005) Tapping indigenous herbaceous legumes forsoil fertility management by resource-poor farmer in Zimbabwe. Agric Ecosyst Environ 109:221–233

    Article  Google Scholar 

  • Mapfumo P, Adjei-Nsiah S, Mtambanengwe F, Chikowo R, Giller KE (2013) Participatory action research (PAR) as an entry point for supporting climate change adaptation by smallholder farmers in Africa. Environ Dev 5:6–22

    Article  Google Scholar 

  • Maredia M, Pingali P (2001) Environmental impacts of productivity- enhancing crop research: a critical review. CGIAR Technical Advisory Committee, Standing Panel on Impact Assessment (SPIA). FAO, Rome, p 35

    Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM, Misra V, Silva Dias PL, Cavalcanti IFA et al (2012) Recent developments on the South American monsoon system. Int J Climatol 32:1–21

    Article  Google Scholar 

  • Mariyono J (2014) Rice production in Indonesia: policy and performance. Asia Pac J Public Adm 36(2):123–134. doi:10.1080/23276665.2014.911489

    Google Scholar 

  • Masvaya EN, Nyamangara J, Nyawasha RW, Zingore S, Delve RJ, Giller KE (2010) Effect of farmer management strategies on spatial variability of soil fertility and crop nutrient uptake in contrasting agro-ecological zones in Zimbabwe. Nutr Cycl Agroecosyst 88:111–120

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–1800

    Article  CAS  PubMed  Google Scholar 

  • Mekuria W, Veldkamp E (2012) Restoration of native vegetation following exclosure establishment on communal grazing lands in Tigray, Ethiopia. Appl Veg Sci 15:71–83

    Article  Google Scholar 

  • Mengistu T, Teketay D, Hulten H, Yemshaw Y (2005) The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. J Arid Environ 60:259–281

    Article  Google Scholar 

  • Millar J, Connell J (2009) Strategies for scaling out impacts from agricultural systems change: the case of forages and livestock production in Laos. Agric Hum Values 27:213–225

    Article  Google Scholar 

  • Nabinger C, de Moraes A, Maraschin GE (2000) Campos in Southern Brazil. In: Lemaire G, Hodgson J, de Moraes A, Nabinger C, de F Carvalho PC (eds) Grassland ecophysiology and grazing ecology. CAB International, Wallingford, pp 355–376

    Chapter  Google Scholar 

  • Nedessa B, Ali J, Nyborg I (2005) Exploring ecological and socio-economic issues for the improvement of area enclosure management: a case study from Ethiopia. DCG Report No. 38. DCG, Oslo, 55 p

    Google Scholar 

  • Nezomba H, Tauro TP, Mtambanengwe F, Mapfumo P (2010) Indigenous legume fallows (indifallows) as an alternative soil fertility resource in smallholder maize cropping systems. Field Crop Res 115:149–157

    Article  Google Scholar 

  • Nezomba H, Mtambanengwe F, Tittonell P, Mapfumo P (2015) Point of no return? Rehabilitating degraded soils for increased crop productivity on smallholder farms in eastern Zimbabwe. Geoderma 239–240:143–155

    Article  CAS  Google Scholar 

  • Nyikahadzoi K, Siziba S, Mango N, Mapfumo P, Adekunhle A, Fatunbi O (2012) Creating food self reliance among the smallholder farmers of eastern Zimbabwe: exploring the role of integrated agricultural research for development. Food Secur 4:647–656

    Article  Google Scholar 

  • Olsson P, Galaz V, Boonstra WJ (2014) Sustainability transformations: a resilience perspective. Ecol Soc 19:1

    Article  Google Scholar 

  • Ong CK, Black CR, Wallace JS, Khan AAH, Lott JE, Jackson NA, Howard SB, Smith DM (2000) Productivity, microclimate and water use in Grevillea robusta-based agroforestry systems on hillslopes in semi-arid Kenya. Agric Ecosyst Environ 80:121–141

    Article  Google Scholar 

  • Ouédraogo ZM (2014)(unpublished) Effets de la couverture du sol à base de Piliostigma reticulatum (DC) Hoscht sur l’association sorgho-niébé dans le village de Yilou, Province du Bam, Burkina Faso. Master thesis, Institut du Développement Rural de Bobo-Dioulasso & African Conservation Tillage Network, Burkina Faso

    Google Scholar 

  • Pant LP (2014) Critical systems of learning and innovation competence for addressing complexity in transformations to agricultural sustainability. Agroecol Sustain Food Syst 38:336–365

    Article  Google Scholar 

  • Pinstrup-Andersen P (2009) Food security: definition and measurement. Food Secur 1:5–7

    Article  Google Scholar 

  • Roep D, Van der Ploeg JD, Wiskerke JSC (2003) Managing technical-institutional design processes: some strategic lessons from environmental co-operatives in The Netherlands. NJAS Wageningen J Life Sci 51:195–217

    Article  Google Scholar 

  • Rossing WAH, Modernel P, Tittonell PA (2014) Diversity in organic and agro-ecological farming systems for mitigation of climate change impact, with examples from Latin America. In: Fuhrer J, Gregory PJ (eds) Climate change impact and adaptation in agricultural systems, CABI climate change series 5. CAB International, Wallingford, pp 69–87

    Google Scholar 

  • Ruggia A, Scarlato S, Cardozo G, Aguerre V, Dogliotti S, Rossing W, Tittonell P (2015) Managing pasture-herd interactions in livestock family farm systems based on natural grasslands in Uruguay. In: 5th international symposium on farming systems design, Montpellier, 7–10 Sept 2015

    Google Scholar 

  • Rusinamhodzi L, Corbeels M, Zingore S, Nyamangara J, Giller KE (2013) Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe. Field Crop Res 147:40–53

    Article  Google Scholar 

  • Russelle MP, Entz MH, Franzluebbers AJ (2007) Reconsidering integrated crop-livestock systems in North America. Agron J 99:325–334

    Article  Google Scholar 

  • Sage C (2014) The transition movement and food sovereignty: from local resilience to global engagement in food system transformation. J Consum Cult 14:254–275

    Article  Google Scholar 

  • Sala OE, Paruelo JM (1997) Ecosystem services in grasslands. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 237–251

    Google Scholar 

  • Schekkerman H, Teunissen W, Oosterveld E (2008) The effect of “mosaic management” on the demography of black-tailed godwit Limosa limosa on farmland. J Appl Ecol 45:1067–1075

    Google Scholar 

  • Scoones I, Thompson J (eds) (2009) Farmer first revisited: innovation for agricultural research and development. Practical Action Publications, London

    Google Scholar 

  • Sharp BR, Whittaker RJ (2003) The irreversible cattle driven transformation of a seasonally flooded Australian savanna. J Biogeogr 30:783–802

    Article  Google Scholar 

  • Sherwood SG, Schut M, Leeuwis C (2012) Learning in the social wild: encounters between farmer field schools and agricultural science and development in ecuador, adaptive collaborative approaches in natural resources governance: rethinking participation, learning and innovation. Routledge, London, pp 102–137

    Google Scholar 

  • Shiferaw Sida T, Baudron F, Kim HK, Giller KE (2014) Old tricks, new insights: Faidherbia albida keeps wheat cool and productive in the Central Rift Valley of Ethiopia. In: Proceedings of the agroecology for Africa international conference, Antananarivo, 3–7 Nov 2014

    Google Scholar 

  • Skelsey P, Holtslag AAM, van der Werf W (2008) Development and validation of a quasi-Gaussian plume model for the transport of botanical spores. Agric For Meteorol 148:1383–1494

    Article  Google Scholar 

  • Skelsey P, Kessel GJT, Rossing WAH, van der Werf W (2009) Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans. Phytopathology 99:887–895

    Article  CAS  PubMed  Google Scholar 

  • Smith A (2007) Translating sustainabilities between Green Niches and Socio-Technical Regimes. Tech Anal Strat Manag 19:427–450

    Article  Google Scholar 

  • Smith A, Seyfang G (2013) Constructing grassroots innovations for sustainability. Glob Environ Chang 23:827–829

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Sumberg J, Thompson J, Woodhouse P (2012) Why agronomy in the developing world has become contentious. Agric Hum Values 30:71–83

    Article  Google Scholar 

  • Swaans K, Boogaard B, Bendapudi R, Taye H, Hendrickx S, Klerkx L (2014) Operationalizing inclusive innovation: lessons from innovation platforms in livestock value chains in India and Mozambique. Innov Dev 4:239–257

    Article  Google Scholar 

  • Thompson J, Scoones I (2009) Addressing the dynamics of agri-food systems: an emerging agenda for social science research. Environ Sci Pol 12:386–397

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmermann C, Félix GF (2015) Agroecology as a vehicule for contributive justice. Agric Hum Values 32(3):523–538

    Article  Google Scholar 

  • Tittonell P (2013) Livelihood strategies, resilience and transformability in African agroecosystems. Agric Syst 126:3–14

    Article  Google Scholar 

  • Tittonell P (2014) Ecological intensification – sustainable by nature. Curr Opin Envirn Sustain 8:53–61

    Article  Google Scholar 

  • Tittonell P, Giller KE (2013) When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crop Res 143:76–90

    Article  Google Scholar 

  • Tittonell P, Scopel E, Andrieu N, Posthumus H, Mapfumo P, Corbeels M, van Halsema GE, Lahmar R, Lugandu S, Rakotoarisoa J, Mtambanengwe F, Pound B, Chikowo R, Naudin K, Triomphe B, Mkomwa S (2012) Agroecology-based aggradation-conservation agriculture (ABACO): targeting innovations to combat soil degradation and food insecurity in semi-arid Africa. F Crop Res 132:168–174

    Article  Google Scholar 

  • UNCTAD (2013) Least developed countries report 2013 – growth with employment for inclusive and sustainable development, 20 Nov 2013, 3365.4 KB

    Google Scholar 

  • UNCTAD (2014) Economic development in Africa report 2014 – catalysing investment for transformative growth in Africa, 04 Jul 2014, 110 page(s), 1020.3 KB

    Google Scholar 

  • van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z (2013) Yield gap analysis with local to global relevance – a review. Field Crop Res 143:4–17

    Article  Google Scholar 

  • van Noordwijk M, Brussaard L (2014) Minimizing the ecological footprint of food: closing yield and efficiency gaps simultaneously? Curr Opin Environ Sustain 8:62–70

    Article  Google Scholar 

  • van der Ploeg JD (2009) Transition: contradictory but interacting processes of change in Dutch Agriculture. In: Poppe KJ, Termeer C, Slingerland M (eds) Transitions towards sustainable agriculture and food chains in peri-urban areas. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Van Paassen A, Klerkx L, Adu-Acheampong R, Adjei-Nsiah S, Zannoue E (2014) Agricultural innovation platforms in West Africa: how does strategic institutional entrepreneurship unfold in different value chain contexts? Outlook Agric 43:193–200

    Article  Google Scholar 

  • Vanloqueren G, Baret PV (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Pol 38:971–983

    Article  Google Scholar 

  • Veldkamp A, Van Altvorst AC, Eweg R, Jacobsen E, Van Kleef A, Van Latesteijn H, Mager S, Mommaas H, Smeets PJAM, Spaans L, Van Trijp JCM (2009) Triggering transitions towards sustainable development of the Dutch agricultural sector: TransForum’s approach. Agron Sustain Dev 29:87–96

    Article  Google Scholar 

  • Waters-Bayer A, Van Veldhuizen L, Wongtschowski M, Wettasinha C, Waters-Bayer A, Kaaria S, Njuki J, Wettasinha C (2009) Recognizing and enhancing processes of local innovation. In: Sanginga P (ed) Innovation Africa: enriching farmers livelihoods. Earthscan, London, pp 239–254

    Google Scholar 

  • Westley F, Olsson P, Folke C, Homer-Dixon T, Vredenburg H, Loorbach D, Thompson J, Nilsson M, Lambin E, Sendzimir J, Banerjee B, Galaz V, Van Der Leeuw S (2011) Tipping toward sustainability: emerging pathways of transformation. Ambio 40:762–780

    Article  PubMed Central  PubMed  Google Scholar 

  • Westley FR, Tjornbo O, Schultz L, Olsson P, Folke C, Crona B, Bodin O (2013) A theory of transformative agency in linked social-ecological systems. Ecol Soc 18:27

    Google Scholar 

  • WFP (2012, 2013) World Food Program 2012 and 2014 annual reports. World Food Program, Rome

    Google Scholar 

  • WHO (2013) World health report 2013: research for universal health coverage. World Health Organisation, Geneva

    Google Scholar 

  • Wijnands FG, Vogelezang JVM (2009) Two complementary transition pathways: supporting strategies for innovation towards sustainable development in Dutch agriculture. In: Poppe KJ, Termeer C, Slingerland M (eds) Transitions towards sustainable agriculture and food chains in peri-urban areas. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Wiskerke JSC, van der Ploeg JD (2004) Seeds of transition: essays on novelty production, niches and regimes in agriculture. Van Gorcum, Assen

    Google Scholar 

  • Wright HL, Lake IR, Dolman PM (2012) Agriculture-a key element for conservation in the developing world. Conserv Lett 5(1):11–19

    Article  Google Scholar 

  • Yélémou B, Dayamba SD, Bambara D, Yaméogo G, Assimi S (2013a) Soil carbon and nitrogen dynamics linked to Piliostigma species in ferugino-tropical soils in the Sudano-Sahelian zone of Burkina Faso, West Africa. J For Res 24:99–108

    Article  CAS  Google Scholar 

  • Yélémou B, Yaméogo G, Koala J, Bationo BA, Hien V (2013b) Influence of the leaf biomass of Piliostigma reticulatum on sorghum production in North Sudanian region of Burkina Faso. J Plant Stud 3:80–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Tittonell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tittonell, P. et al. (2016). Ecological Intensification: Local Innovation to Address Global Challenges. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_1

Download citation

Publish with us

Policies and ethics