Skip to main content

Process Intensification in Biotechnology Applications

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering

Abstract

This chapter presents an overview on how process intensification has influenced biotechnology applications from a multidisciplinary perspective. Initially, the process intensification philosophy is contextualized into biotechnology due to the particular challenges of these processes. This leads to a conceptual map analyzing the disciplines’ interaction to achieve bioprocesses intensification. Subsequently, intensification is explored mainly from transforming biomass into chemicals point of view as an integrated solution addressed within the biorefinery concept. The chapter focuses into revising and presenting representative examples from process engineering perspective. First, how to enhance raw materials utilization in fermentations and enzymatic systems is presented. Secondly, advances on in situ product removal/recovery in order to enhance the reaction environment are presented, emphasizing on membrane bioreactor technologies. Finally, some current and future challenges are assessed to achieve bioprocess intensification. We strongly believe that developing bioprocess intensification philosophy will bring new perspectives to increase the cost-effectiveness of industrial applications towards a more sustainable future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerven TV, Stankiewicz AJ (2009) Structure, energy, synergy, time—the fundamentals of process intensification. Ind Eng Chem Res 48:2465–2474

    Article  CAS  Google Scholar 

  2. Górak A, Stankiewicz A (2011) Research agenda for process intensification—towards a sustainable world of 2050. Institute for Sustainable Process Technology, Amersfoort

    Google Scholar 

  3. Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  CAS  Google Scholar 

  4. Parajuli R, Dalgaard T, Jørgensen U, Adamsen APS, Knudsen MT, Birkved M, Gylling M, Schjørring JK (2015) Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew Sustain Energy Rev 43:244–263

    Article  CAS  Google Scholar 

  5. Coreño-Alonso A, Solé A, Diestra E, Esteve I, Gutiérrez-Corona JF, Reyna-López GE, Fernández FJ, Tomasini A (2014) Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8. Bioresour Technol 158:188–192

    Article  CAS  Google Scholar 

  6. Collura MA, Luyben WL (1988) Energy-saving distillation designs in ethanol production. Ind Eng Chem Res 27:1686–1696

    Article  CAS  Google Scholar 

  7. Toquero C, Bolado S (2014) Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing. Bioresour Technol 157:68–76

    Article  CAS  Google Scholar 

  8. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73

    Article  CAS  Google Scholar 

  9. Santacoloma PA (2012) Multi-enzyme process modeling. PhD thesis, Technical University of Denmark

    Google Scholar 

  10. Santacoloma P, Woodley J (2014) Perspectives on multienzyme process technology. In: Riva S, Fessner W-D (eds) Cascade biocatalysis: integrating stereoselective and environmentally friendly reactions. Wiley, New York, pp 231–247

    Google Scholar 

  11. Padró M, Castillo JA, Gómez L, Joglar J, Clapés P, de Bolós C (2010) Cytotoxicity and enzymatic activity inhibition in cell lines treated with novel iminosugar derivatives. Glycoconj J 27:277–285

    Article  CAS  Google Scholar 

  12. Babich L, Peralta JLVM, Hartog AF, Wever R (2013) Phosphorylation by alkaline phosphatase: immobilization and synthetic potential. Int J Chem 5:87–98

    Article  CAS  Google Scholar 

  13. Van Hecke W, Ludwig R, Dewulf J, Auly M, Messiaen T, Haltrich D, Van Langenhove H (2009) Bubble-free oxygenation of a bi-enzymatic system: effect on biocatalyst stability. Biotechnol Bioeng 102:122–131

    Article  CAS  Google Scholar 

  14. Bader J, Mast-Gerlach E, Popovic MK, Bajpai R, Stahl U (2010) Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 109:371–387

    Article  CAS  Google Scholar 

  15. Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  CAS  Google Scholar 

  16. He Q, Hemme CL, Jiang H, He Z, Zhou J (2011) Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. Bioresour Technol 102:9586–9592

    Article  CAS  Google Scholar 

  17. Jiang H-L, He Q, He Z, Hemme CL, Wu L, Zhou J (2013) Continuous cellulosic bioethanol fermentation by cyclic fed-batch cocultivation. Appl Environ Microbiol 79:1580–1589

    Article  Google Scholar 

  18. Ndaba B, Chiyanzu I, Marx S, Obiero G (2014) Effect of Saccharomyces cerevisiae and Zymomonas mobilis on the co-fermentation of sweet sorghum bagasse hydrolysates pretreated under varying conditions. Biomass Bioenergy 71:350–356

    Article  CAS  Google Scholar 

  19. Gutiérrez-Rivera B, Ortiz-Muñiz B, Gómez-Rodríguez J, Cárdenas-Cágal A, González JM, Aguilar-Uscanga MG (2014) Bioethanol production from hydrolyzed sugarcane bagasse supplemented with molasses “B” in a mixed yeast culture. Renew Energy 74:399–405

    Article  CAS  Google Scholar 

  20. Morales-Rodriguez R, Rodriguez-Gomez D, Sales-Cruz M, de los Reyes-Heredia J, Pérez-Cisneros E (2014) Model-based analysis for acetone-butanol-ethanol production process through a dynamic simulation. Comput Aided Chem Eng 33:133–138

    Article  Google Scholar 

  21. Mayank R, Ranjan A, Moholkar VS (2013) Mathematical models of ABE fermentation: review and analysis. Crit Rev Biotechnol 33:419–447

    Article  CAS  Google Scholar 

  22. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact 13:1–11

    Article  CAS  Google Scholar 

  23. Li L, Ai H, Zhang S, Li S, Liang Z, Wu Z-Q, Yang S-T (2013) Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour Technol 143:397–404

    Article  CAS  Google Scholar 

  24. Yao W, Nokes S (2014) First proof of concept of sustainable metabolite production from high solids fermentation of lignocellulosic biomass using a bacterial co-culture and cycling flush system. Bioresour Technol 173:216–223

    Article  CAS  Google Scholar 

  25. Seppälä JJ, Puhakka JA, Yli-Harja O, Karp MT, Santala V (2011) Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. Int J Hydrogen Energy 36:10701–10708

    Article  CAS  Google Scholar 

  26. Li Q, Lui C-Z (2012) Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste. Int J Hydrogen Energy 37:10648–10654

    Article  CAS  Google Scholar 

  27. Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P (2012) Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol Biofuels 5:1–15

    Article  CAS  Google Scholar 

  28. Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR (2012) Microbial hydrogen production by bioconversion of crude glycerol: a review. Int J Hydrogen Energy 37:6473–6490

    Article  CAS  Google Scholar 

  29. Zhang Y, Vadlani PV (2015) Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng 119:694–699

    Article  CAS  Google Scholar 

  30. Wang Y, Tashiro Y, Sonomoto K (2015) Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 119:10–18

    Article  CAS  Google Scholar 

  31. Juhász T, Kozma K, Szengyel Z, Réczey K (2003) Production of beta-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol Biotechnol 41:49–53

    Google Scholar 

  32. Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2010) Bleach enhancement of mixed wood pulp by xylanase–laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol 160:255–268

    Article  CAS  Google Scholar 

  33. Liu X, Lv J, Zhang T, Deng Y (2014) Direct conversion of pretreated straw cellulose into citric acid by co-cultures of Yarrowia lipolytica SWJ-1b and immobilized Trichoderma reesei Mycelium. Appl Biochem Biotechnol 173:501–509

    Article  CAS  Google Scholar 

  34. Ho NW, Chen Z, Brainard AP, Sedlak S (1999) Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. In: Tsao GT (ed) Recent progress in bioconversion of lignocellulosics. Springer, Heidelberg, pp 163–192

    Chapter  Google Scholar 

  35. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  36. Laluce C, Schenberg AC, Gallardo JC, Coradello L, Pombeiro-Sponchiado SR (2012) Advances and developments in strategies to improve strains of saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol—a review. Appl Biochem Biotechnol 166:1908–1926

    Article  CAS  Google Scholar 

  37. Tsai C-T, Morales-Rodriguez R, Sin G, Meyer AS (2014) A dynamic model for cellulosic biomass hydrolysis: a comprehensive analysis and validation of hydrolysis and product inhibition mechanisms. Appl Biochem Biotechnol 172:2815–2837

    Article  CAS  Google Scholar 

  38. Luo Z, Zhang Y, Bao J (2014) Extracellular secretion of β-glucosidase in ethanologenic E. coli enhances ethanol fermentation of cellobiose. Appl Biochem Biotechnol 174:772–783

    Article  CAS  Google Scholar 

  39. Nakamura N, Yamada R, Katahira S, Tanaka T, Fukuda H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of glucosidase on its cell surface. Enzyme Microb Technol 43:233–236

    Article  CAS  Google Scholar 

  40. Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PN, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  41. Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673

    Article  CAS  Google Scholar 

  42. Fei Q, Wewetzer SJ, Kurosawa K, Rha C, Sinskey AJ (2015) High-cell-density cultivation of an engineered Rhodococcus opacusstrain for lipid production via co-fermentation of glucose and xylose. Process Biochem 50:500–506

    Article  CAS  Google Scholar 

  43. Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  CAS  Google Scholar 

  44. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  Google Scholar 

  45. Eiteman MA, Lee SA, Altman R, Altman E (2009) A substrate-selective co-fermentation strategy with escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 102(3):822–827

    Article  CAS  Google Scholar 

  46. Yang M, Kuittinen S, Zhang J, Vepsäläinen J, Keinänen M, Pappinen A (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone–butanol–ethanol production. Bioresour Technol 179:128–135

    Article  CAS  Google Scholar 

  47. Wang Z, Yang S-T (2013) Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 137:116–123

    Article  CAS  Google Scholar 

  48. Ji X-J, Huang H, Du J, Zhu J-G, Ren L-J, Li S, Nie Z-K (2009) Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour Technol 100:5214–5218

    Article  CAS  Google Scholar 

  49. Zeng X, Chen X-S, Ren X-D, Liu Q-R, Wang L, Sun Q-X, Tang L, Mao Z-G (2014) Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-l-lysine productivity. Appl Biochem Biotechnol 173:2211–2224

    Article  CAS  Google Scholar 

  50. Mohagheghi A, Evans K, Chou Y-C, Zhang M (2002) Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Appl Biochem Biotechnol 98–100:885–898

    Article  Google Scholar 

  51. Delgenes JP, Moletta R (1989) Fermentation of o-xylose, 0-glucose, r-arabinose mixture by Pichia stipitis: effect of the oxygen transfer rate on fermentation performance. Biotechnol Bioeng 34:398–402

    Article  CAS  Google Scholar 

  52. Abreu AA, Karakashev D, Angelidaki I, Sousa DZ, Alves M (2012) Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnol Biofuels 5(6):1–12

    Google Scholar 

  53. Xia T, Eiteman MA, Altman E (2012) Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact 11(77):1–9

    Google Scholar 

  54. Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G (2011) A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 Sugars. Chinese J Chem Eng 19:185–191

    Article  CAS  Google Scholar 

  55. Wang R, Koppram R, Olsson L, Franzén CJ (2014) Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresour Technol 172:303–311

    Article  CAS  Google Scholar 

  56. Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugarcane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21(5):1453–1460

    Article  CAS  Google Scholar 

  57. Kang L, Wang W, Lee Y (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161:53–66

    Article  CAS  Google Scholar 

  58. Zhu J-Q, Qin L, Li B-Z, Yuan Y-J (2014) Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Bioresour Technol 169:9–18

    Article  CAS  Google Scholar 

  59. Olofsson K, Palmqvist B, Lidén G (2012) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17

    Article  CAS  Google Scholar 

  60. Hernandez-Escoto H, Rodriguez-Gomez D, Morales-Rodriguez R (2013) Regulatory control for the operation of a simultaneous saccharification and co-fermentation reactor for bioethanol production. Comput Aided Chem Eng 32:43–48

    Article  CAS  Google Scholar 

  61. Morales-Rodriguez R, Meyer AS, Gernaey KV, Sin G (2011) Dynamic model-based evaluation of process configurations for integrated operation of hydrolysis and co-fermentation for bioethanol production from lignocellulose. Bioresour Technol 102:1174–1184

    Article  CAS  Google Scholar 

  62. Budhavaram NK, Fan Z (2009) Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresour Technol 100:5966–5972

    Article  CAS  Google Scholar 

  63. Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173:376–383

    Article  CAS  Google Scholar 

  64. Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 136–140:721–738

    Google Scholar 

  65. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  66. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405

    Article  CAS  Google Scholar 

  67. Rodriguez-Gomez D, Lehmann L, Schultz-Jensen N, Bjerre AB, Hobley TJ (2012) Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by Trichoderma reesei. Appl Biochem Biotechnol 166:2051–2063

    Article  CAS  Google Scholar 

  68. den Haan R, van Rensburg E, Rose SH, Görgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  CAS  Google Scholar 

  69. Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L (2011) Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy 35:3727–3732

    Article  CAS  Google Scholar 

  70. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    Article  CAS  Google Scholar 

  71. Freeman A, Woodley J, Lilly M (1993) In-situ product removal as a tool for bioprocessing. Biotechnology 11:1007–1012

    Article  CAS  Google Scholar 

  72. Schügerl K (2000) Integrated processing of biotechnology products. Biotechnol Adv 18:581–599

    Article  Google Scholar 

  73. Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. In: von Stockar U, van der Wielen L (eds) Process integration in biochemical engineering. Springer, Berlin, pp 149–175

    Chapter  Google Scholar 

  74. Carstensen F, Apel A, Wessling M (2012) In situ product recovery: submerged membranes vs. external loop membranes. J Membr Sci 394-395:1–36

    Article  CAS  Google Scholar 

  75. Baker R (2012) Membrane technology and applications. Wiley, New York

    Book  Google Scholar 

  76. Charcosset C (2006) Membrane processes in biotechnology: an overview. Biotechnol Adv 24:482–492

    Article  CAS  Google Scholar 

  77. Abels C, Carstensen F, Wessling M (2013) Membrane processes in biorefinery applications. J Membr Sci 444:285–317

    Article  CAS  Google Scholar 

  78. Wei P, Cheng L-H, Zhang L, Xu X-H, Chen H-L, Gao C-J (2014) A review of membrane technology for bioethanol production. Renew Sustain Energy Rev 30:388–400

    Article  CAS  Google Scholar 

  79. Castilho L, Medronho R (2002) Cell retention devices for suspended-cell perfusion cultures. In: Schügerl K, Zeng A-P (eds) Tools and applications of biochemical engineering science. Springer, Berlin, pp 129–169

    Chapter  Google Scholar 

  80. Chang N, Furusaki S (1991) Membrane bioreactors: present and prospects. Adv Biochem Eng Biotechnol 44:21–64

    Google Scholar 

  81. Pedersen L (1996) Modeling of mass transfer in jet loop fermenters. PhD thesis, Technical University of Denmark, Lyngby

    Google Scholar 

  82. Prado-Rubio O (2007) Single cell protein production: modeling, control and optimization. MSc thesis, Technical University of Denmark, Lyngby

    Google Scholar 

  83. Prado-Rubio O (2010) Integration of bioreactor and membrane separation processes: a model based approach. PhD thesis, Technical University of Denmark, Lyngby

    Google Scholar 

  84. Rios G, Belleville M, Paolucci D, Sanchez J (2004) Progress in enzymatic membrane reactors—a review. J Membr Sci 242:189–196

    Article  CAS  Google Scholar 

  85. Jochems P, Satyawali Y, Dielsab L, Dejonghea W (2011) Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem 13:1609–1623

    Article  CAS  Google Scholar 

  86. Güleç H (2013) Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics. Colloids Surf B Biointerfaces 104:83–90

    Article  CAS  Google Scholar 

  87. Luo J, Meyer A, Jonsson G, Pinelo M (2014) Enzyme immobilization by fouling in ultrafiltration membranes: impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy. Biochem Eng J 83:79–89

    Article  CAS  Google Scholar 

  88. Tang C, Saquing CD, Sarin PK, Kelly RM, Khan SA (2014) Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. J Membr Sci 472:251–260

    Article  CAS  Google Scholar 

  89. Jonsson G, Prado-Rubio O (2011) Modeling and operation of dynamic membrane processes. In: Key note at ICOM conference 2011, vol 425, Amsterdam, the Netherlands

    Google Scholar 

  90. Kaseno, Miyazawa I, Kogugan T (1998) Effect of product removal by a pervaporation on ethanol fermentation. J Ferment Bioeng 86(5):488–493

    Article  CAS  Google Scholar 

  91. O’Brien DJ, Craig JC (1996) Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol 44(6):699–704

    Article  Google Scholar 

  92. Dong Y, Zhang L, Shen JN, Song MY, Chen HL (2006) Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 193:202–210

    Article  CAS  Google Scholar 

  93. Mulder M (1997) Basic principles of membrane technology. Kluwer Academic, Holland

    Google Scholar 

  94. Peng P, Shi BL, Lan YQ (2011) A review of membrane materials for ethanol recovery by pervaporation. Sep Sci Technol 46(2):234–246

    Article  CAS  Google Scholar 

  95. García V et al (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sustain Energy Rev 15(2):964–980

    Article  CAS  Google Scholar 

  96. Alkhudhiria A, Darwishb N, Hilala N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18

    Article  CAS  Google Scholar 

  97. Izquierdo-Gil M, Jonsson G (2003) Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J Membr Sci 214:113–130

    Article  CAS  Google Scholar 

  98. Lei Z, Chen B, Ding Z (2005) Special distillation processes. Elsevier, Amsterdam

    Google Scholar 

  99. Gryta M, Morawski A, Tomaszewska M (2000) Ethanol production in membrane distillation bioreactor. Catal Today 56:159–165

    Article  CAS  Google Scholar 

  100. Grypta M (2001) The fermentation process integrated with membrane. Sep Purif Technol 24:283–296

    Article  Google Scholar 

  101. Lewandowicz G, Białas W, Marczewski B, Szymanowska D (2011) Application of membrane distillation for ethanol recovery during fuel ethanol production. J Membr Sci 375:212–219

    Article  CAS  Google Scholar 

  102. Ljungh A, Wadström T (2006) Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7:73–89

    CAS  Google Scholar 

  103. SRI-Consulting (2010) SRI-consulting—lactic acid, its salts and esters [Online]. http://www.sriconsulting.com. Accessed June 2010

  104. Nielsen J, Villadsen J, Lidén G (2011) Bioreaction engineering principles, 3rd edn. Springer, New York

    Google Scholar 

  105. Hulse J (2004) Biotechnologies: past history, present state and future prospects. Trends Food Sci Technol 15:3–18

    Article  CAS  Google Scholar 

  106. Friedman M, Gaden E (1970) Growth and acid production by lactobacillus delbrueckii in a dialysis culture system. Biotechnol Bioeng 12:961–974

    Article  CAS  Google Scholar 

  107. Zheleznov A, Windmöller D, Körner S, Böddeker K (1998) Dialytic transport of carboxylic acids through an anion exchange membrane. J Membr Sci 139:137–143

    Article  CAS  Google Scholar 

  108. Hongo M, Nomura Y, Iwahara M (1986) Novel method of lactic acid production by electrodialysis fermentation. Appl Environ Microbiol 52:314–319

    CAS  Google Scholar 

  109. Lee E, Moon S, Chang Y, Yoo I, Chang H (1998) Lactic acid recovery using two-stage electrodialysis and its modelling. J Membr Sci 145:53–66

    Article  CAS  Google Scholar 

  110. Glassner D, Datta R (1990) Process for production and purification of lactic acid. European Patent No. EP0393818A1

    Google Scholar 

  111. Ohleyer E, Wilke C, Blanch E (1985) Continuous production of lactic acid from glucose and lactose in a cell-recycle reactor. Appl Biochem Biotechnol 11:457–463

    Article  CAS  Google Scholar 

  112. Zhang D, Cheryan M (1994) Starch to lactic acid in a continuous membrane bioreactor. Process Biochem 29:145–150

    Article  Google Scholar 

  113. Timmer J, Kromkap J, Robbertsen T (1994) Lactic acid separation from fermentation broths by reverse osmosis and nanofiltration. J Membr Sci 92:185–197

    Article  CAS  Google Scholar 

  114. Boyaval P, Corre C, Terre S (1987) Continuous lactic acid fermentation with concentrated product recovery by ultrafiltration and electrodialysis. Biotechnol Lett 9:207–212

    Article  CAS  Google Scholar 

  115. Heriban V, Skára J, Sturdík E, Ilavský J (1993) Isolation of free lactic acid using electrodialysis. Biotechnol Techn 7:63–68

    Article  CAS  Google Scholar 

  116. Hábová V, Melzoch K, Rychtera M (2004) Modern method of lactic acid recovery from fermentation broth. Czech J Food Sci 22:87–94

    Google Scholar 

  117. Raucourt A, Girard D, Prigent Y, Boyaval P (1989) Lactose continuous fermentation with cells recycled by ultrafiltration and lactate separation by electrodialysis: modelling and simulation. Appl Microbiol Biotechnol 30:521–527

    Article  Google Scholar 

  118. Garde A (2002) Production of lactic acid from renewable resources using electrodialysis for product recovery. PhD thesis, Technical University of Denmark

    Google Scholar 

  119. Rype J (2003) Modelling of electrically driven processes. PhD thesis, Technical University of Denmark, Lyngby

    Google Scholar 

  120. Strathmann H (2004) Ion-exchange membrane separation processes. Elsevier, Amsterdam

    Google Scholar 

  121. Prado-Rubio O, Jørgensen S, Jonsson G (2011) Reverse electro-enhanced dialysis for lactate recovery from a fermentation broth. J Membr Sci 374:20–32

    Article  CAS  Google Scholar 

  122. Kislik V (2010) Liquid membranes principles & applications in chemical separation & wastewater treatment, 1st edn. Elsevier, Amsterdan

    Google Scholar 

  123. Noble R, Stern S (2003) Membrane separations technology: principles and applications, 3rd edn. Elsevier, Amsterdan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Hernández-Escoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prado-Rubio, O.A., Morales-Rodríguez, R., Andrade-Santacoloma, P., Hernández-Escoto, H. (2016). Process Intensification in Biotechnology Applications. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_7

Download citation

Publish with us

Policies and ethics