Skip to main content

Ecological and Evolutionary Considerations Regarding Corals in a Rapidly Changing Environment

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Coral reefs have been threatened for ≥35 years, primarily by global warming, disease, and unwanted inter-oceanic species introductions. Here we discuss differences between the evolution of corals and other organisms in the Atlantic vs. the Pacific Oceans through natural selection caused by oceanic cooling in the Atlantic and the resultant differential extinctions. We will also consider the implications of differential Pacific vs. Atlantic adaptations for invasive species and how it makes the former formidable predators and competitors. The effects of climate change and global warming on corals will also be considered, including the poleward movement of our current climatic zones at the expense of the polar and sub-polar zones. We also predict the creation of a new “Hyper-Tropical Zone” in the center of the Equatorial Zone, characterized by mass mortalities of zooxanthellate organisms, causing both local endemic and global pandemic extinctions. The effects of global warming on the coral-zooxanthellar symbiotic relationship examines how zooxanthellae may be the “weak” link in the system, explaining why they are having difficulty keeping up with the pace of global warming. We also consider the possibility of a replacement symbiont arising. In this context, we examine the evolution of coral immunity as it affects the host, symbiont replacement, and disease. Such studies will help us to better understand the evolution of innate and adaptive immune systems, and ultimately better understand vertebrate model systems for human health studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CLRs:

C-type lectin receptors

DAMPs:

Danger/damage-associated molecular patterns

DNA:

Deoxyribonucleic acid

DSMs:

DNA sensing molecules

HMGB1:

High-mobility group box 1 proteins

IG:

Immunoglobulin

LRR:

Leucine rich repeat

MBL:

Mannose binding lectins

Mhc:

Major histocompability complex

NLRs:

NOD-like receptors

PAMPs:

Pathogen associated molecular patterns

PRR:

Pattern-recognition receptors

RLRs:

RIG-I-like receptors

TCR:

T-cell receptors

TIRs:

Toll/IL-1 receptors

TLR:

Toll-like receptors

References

  • Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal symbionts and coral hosts define their bleaching response to heat and light stress. Proc Roy Soc Lond B Biol Sci doi:10.1098/rspb.2008.0180. Accessed 26 Apr,2016

    Google Scholar 

  • Addessi L (2001) Giant clam bleaching in the lagoon of Takapoto atoll (French Polynesia). Coral Reefs 19:220

    Google Scholar 

  • Alamaru A, Bronstein O, Dishon G et al (2009) Opportunistic feeding by the fungiid coral Fungia scruposa on the moon jellyfish Aurelia aurita. Coral Reefs 28:865. doi:10.1007/s00338-009-0507-7

    Article  Google Scholar 

  • Arala-Chaves M, Sequeira T (2000) Is there any kind of adaptive immunity in invertebrates. Aquaculture 191:247–258

    Article  CAS  Google Scholar 

  • Baker AC (2001) Ecosystems: reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  PubMed  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR et al (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741. doi:10.1038/430741a

    Article  CAS  PubMed  Google Scholar 

  • Baker AC, Glynn PW, Reigl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends, and future outlook. Estuar Coast Shelf Sci 80:435–471. doi:10.1016/j.ecss.2008.09.003

    Article  Google Scholar 

  • Baruch R, Avishai N, Rabinowitz C (2005) UV incites diverse levels of DNA breaks in different cellular compartments of a branching coral species. J Exp Biol 208:843–848. doi:10.1242/jeb.01496

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME (2007) DAMPs, PAMPs, and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5. doi:10.1189/jlb.0306164

    Article  CAS  PubMed  Google Scholar 

  • Bigger CH, Hildemann WH (1982) Cellular defense systems of the coelenterata. Phylogenet Ontog 1982:59–87

    Article  Google Scholar 

  • Bosch TCG (2008) The path less explored: innate immune reactions in cnidarians. Nucl Acids Mol Biol 21:27–42

    Article  CAS  Google Scholar 

  • Boto K, Isdale PJ (1985) Fluorescent bands in massive corals result from terrestrial fulvic acid inputs to nearshore zone. Nature 315:396–397

    Article  CAS  Google Scholar 

  • Brower DL, Brower SM, Hayward DC et al (1997) Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc Natl Acad Sci USA 94:9182–9187. doi:10.1073/pnas.94.17.9182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buddemeier RW, Fautin DG, Ware JR (1997) Acclimation, adaptation and algal symbiosis in reef-building scleractinian corals. In: den Hartog JC (ed) Coelenterate biology. Proceedings of the 6th international congress coelenterate biology, Noordwijkerhout, 16–21 July 1995, No 3. Nationaal Natuurhistorisch Museum, Leiden, pp 71–76

    Google Scholar 

  • Cairns SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the western Atlantic. Revisión de los corales azooxantelados (Scleractinia) de las aguas someras del Atlántico occidental. Stud Nat Hist Caribb Reg 75:1–231

    Google Scholar 

  • Carlton JT (1996) Pattern, process, and prediction in marine invasion ecology. Biol Conserv 78:97–106. doi:10.1016/0006-3207(96)00020-1

    Article  Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500. http://www.jstor.org/stable/2097243. Accessed 26 Apr 2016

    Google Scholar 

  • Castiglioni A, Canti V, Rovere-Querini P et al (2011) High mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res 343:189–199. doi:10.1007/s00441-010-1033-1

    Article  CAS  PubMed  Google Scholar 

  • Chadwick NE (1988) Competition and locomotion in a free-living fungiid coral. J Exp Mar Biol Ecol 123:189–200

    Article  Google Scholar 

  • Chadwick-Furman NE, Rinkevich B (1994) A complex allorecognition system in a reef-building coral: delayed responses, reversals, and non-transitive hierarchies. Coral Reefs 13:57–63

    Article  Google Scholar 

  • Chapman AS (1999) From introduced species to invader: what determines variation in the success of Codium fragile ssp. tomentosoides (Chlorophyta) in the North Atlantic Ocean? Helgol Meeresun 52:277–289

    Article  Google Scholar 

  • Church JA, White NJ, Konikow LF et al (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi:10.1029/2011GL048794

    Article  Google Scholar 

  • Coles SL, Defelice RC, Eldredge LG, Carlton JT (1999) Historical and recent introductions of non-indigenous marine species into Pearl Harbor, Oahu, Hawaiian Islands. Mar Biol 135:147–158

    Article  Google Scholar 

  • Correa AMS, Baker AC (2009) Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 28:81–93

    Article  Google Scholar 

  • Cox G (1986) Comparison of Prochloron from different hosts. I. Structural and ultrastructural characteristics. New Phytol 104:429–445. doi:10.1111/j.1469-8137.1986.tb02910.x

    Article  Google Scholar 

  • Culbertson J, Harper DE (2002) Settlement of a colonial ascidian on an artificial reef in the Gulf of Mexico. In: McKay M, Nides J, Vigil D (eds) Proceedings Gulf of Mexico fish and fisheries: bringing together new and recent research, New Orleans, 2002, OCS report No 2002-004. US Minerals Management Service, New Orleans, pp 614–630

    Google Scholar 

  • Daly KA, Liu S, Agrawal V et al (2012) Damage-associated molecular patterns within xenogeneic biologic scaffolds and their effects on host remodeling. Biomaterials 33:91–101. doi:10.1016/j.biomaterials.2011.09.040

    Article  CAS  PubMed  Google Scholar 

  • Dana TF (1975) Development of contemporary eastern Pacific coral reefs. Mar Biol 33:355–374

    Article  Google Scholar 

  • de Paula AF, Creed JC (2004) Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull Mar Sci 74:175–183

    Google Scholar 

  • Debose JL, Nuttall MF, Hickerson EL et al (2013) A high-latitude coral community with an uncertain future: Stetson Bank, Northwestern Gulf of Mexico. Coral Reefs 32:255–267

    Article  Google Scholar 

  • Dishaw LJ, Smith SL, Bigger CH (2005) Characterisation of a C3-like cDNA in a coral: phylogenetic implications. Immunogenetics 57:535–548

    Article  CAS  PubMed  Google Scholar 

  • Dishaw LJ, Flores-Torres JA, Mueller MG et al (2012) A basal chordate model for studies of gut microbial immune interactions. Front Immunol 3:1–10. doi:10.3389/fimmu.2012.00096

    Article  Google Scholar 

  • Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Dolan J (1992) Myxotrophy in ciliates: a review of Chlorella symbiosis and chloroplast retention. Mar Microb Foodwebs 6:115–132

    Google Scholar 

  • Drake JW (1974) The role of mutation in microbial evolution. In: Carlile JM, Skehel JJ (eds) Evolution in the microbial world. Cambridge University Press, Cambridge, pp 41–58

    Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA et al (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53. doi:10.1016/S0022-0981(02)00036-9

    Article  Google Scholar 

  • Eakin CM, Morgan JA, Heron SF et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE. doi:10.1371/journal.pone.0013969

    Google Scholar 

  • Elahi R (2008) Effects of aggregation and species identity on the growth and behavior of mushroom corals. Coral Reefs 27:881–885

    Article  Google Scholar 

  • Englund RA, Arakaki K, Preston DJ et al (2000) Final report prepared for the Hawaii Department of land and natural resources, Division of Aquatic Resources. Hawaii Biol Survey, Bishop Mus Tech Rep No 17. Bishop Museum, Honolulu

    Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL et al (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature, and shading histories. Mol Ecol 13:2445–2458. doi:10.1111/j.1365-294X.2004.02230.x

    Article  CAS  PubMed  Google Scholar 

  • Fenner D, Banks K (2004) Orange cup coral Tubastraea coccinea invades Florida and the Flower Garden Banks, northwestern Gulf of Mexico. Coral Reefs 23:505–507

    Google Scholar 

  • Feyrer F, Nobriga ML, Sommer TR (2007) Multidecadal trends for three declining fish species: habitat patterns and mechanisms in the San Francisco Estuary, California, USA. Can J Fish Aquat Sci 64:723–734. doi:10.1139/f07-048

    Article  Google Scholar 

  • Fitt WK, Trench RK (1981) Spawning, development, and acquisition of zooxanthellae by Tridacna squamosa (Mollusca, Bivalvia). Biol Bull 161:213–235

    Google Scholar 

  • Frost SH (1977) Miocene to Holocene evolution of Caribbean Province reef-building corals. In: Taylor DL (ed) Proceedings of the 3rd international coral reef symposium, vol 2. University of Miami, Miami, pp 353–359

    Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology. Sinauer Press, Sunderland

    Google Scholar 

  • Goreau TF, Wells JW (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453

    Google Scholar 

  • Graham WM, Bayha KM (2008) Assessing oil and gas platforms for settlement of jellyfish polyps in the northern gulf of Mexico. In: Proceedings of the 24th Gulf of Mexico information transfer meeting, New Orleans, Jan 2007, OCS Report No 2008-012. US Dept Interior Minerals Management Service, New Orleans, p 348

    Google Scholar 

  • Graham WM, Martin DL, Felder DL et al (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952

    Article  CAS  PubMed  Google Scholar 

  • Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71:214–222. doi:10.1111/j.1095-8649.2007.01575.x

    Article  CAS  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24. doi:10.1186/1471-2148-6-24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemmrich G, Miller DJ, Bosch TCG (2007) The evolution of immunity: a low-life perspective. Trends Immunol 28:449–454

    Article  CAS  PubMed  Google Scholar 

  • Hennessey SM, Sammarco PW (2014) Competition for space in two invasive Indo-Pacific corals – Tubastraea micranthus and Tubastraea coccinea: laboratory experimentation. J Exp Mar Biol Ecol 459:144–150. doi:10.1016/j.jembe.2014.05.021

    Article  Google Scholar 

  • Hildemann WH, Jokiel PL, Bigger CH et al (1980) Allogeneic polymorphism and alloimmune memory in coral, Montipora verrucosa. Transplantation 30:297–301

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Houssen WE, Jaspars M (2010) Azole-based cyclic peptides from the sea squirt Lissoclinum patella: old scaffolds, new avenues. Chembiochem 11:1803–1815. doi:10.1002/cbic.201000230

    Article  CAS  PubMed  Google Scholar 

  • Huertas E, Rouco M, Lopez-Rodas V et al (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc R Soc Lond B 278:3534–3543, http://rspb.royalsocietypublishing.org/content/early/2011/04/19/rspb.2011.0160.short

    Article  Google Scholar 

  • Hughes TP (1984) Population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 123:778–795

    Article  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166. doi:10.2307/1942555. Accessed 26 Apr 2016

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi:10.1126/science.1085046

    Article  CAS  PubMed  Google Scholar 

  • Humann P, Deloach N (1996) Reef coral identification. Florida, Caribbean, Bahamas: including marine plants. New World, Jacksonville

    Google Scholar 

  • Hummels D (2007) Transportation costs and international trade in the second era of globalization. J Econ Perspect 21:131–154. http://www.jstor.org/stable/30033738

    Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune response. Nat Immunol 5:987–995

    Article  CAS  PubMed  Google Scholar 

  • Jackson PNW (2010) Introducing palaeontology: a guide to ancient life. Dunedin Press, Edinburgh

    Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13. doi:10.1101/SQB.1989.054.01.003

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Johnson MD (2011) Acquired phototrophy in ciliates: a review of cellular interactions and structural adaptations. J Eukaryot Microbiol 58:185–195. doi:10.1111/j.1550-7408.2011.00545.x

    Article  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384. doi:10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their cross-talk with other innate receptors in infection and immunity. Immunity 34:637–650. doi:10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Knack BA, Iguchi A, Shinzato C et al (2008) Unexpected diversity of cnidarian integrins: expression during coral gastrulation. BMC Evol Biol 8:136. doi:10.1186/1471-2148-8-136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kominz MA (2001) Sea level variations over geologic time. In: Steele JH, Turekian KK (eds) Encyclopaedia of the oceans. Academic, New York, pp 2605–2613. doi:10.1006/rwos.2001.0255

    Chapter  Google Scholar 

  • Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8:279–289. doi:10.1038/nri2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann DHH (1985) Living coral reefs of the world. Arco, New York

    Google Scholar 

  • Kumar S, Ingle H, Prasad DVR et al (2013) Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 39:229–246. doi:10.3109/1040841X.2012.706249

    Article  CAS  PubMed  Google Scholar 

  • Kvennefors ECE, Leggat W, Hoegh-Guldberg O et al (2008) An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 32:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Kvennefors EC, Leggat W, Kerr CC et al (2010) Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. Dev Comp Immunol 34:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • La Barre S, Coll JC (1982) Movement in soft corals: an interaction between Nephthea brassica (Coelenterata: Octocorallia) and Acropora hyacinthus (Coelenterata: Scleractinia). Mar Biol 72:119–124

    Article  Google Scholar 

  • LaJeunesse T (2005) Species radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  CAS  PubMed  Google Scholar 

  • LaJeunesse T, Lambert G, Andersen R et al (2005) Symbiodinium (Pyrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886

    Article  CAS  Google Scholar 

  • Lambert G (2002) Non-indigenous ascidians in tropical waters. Pac Sci 56:291–298. doi:10.1353/psc.2002.0026

    Article  Google Scholar 

  • Land WG (2011) Role of heat shock protein 70 in innate alloimmunity. Front Immunol 2:89. doi:10.3389/fimmu.2011.00089

    PubMed  Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals: a review of mechanisms and effects. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs, vol 25. Elsevier, Amsterdam, pp 209–252

    Google Scholar 

  • Lindquist N, Hay ME (1995) Can small rare prey be chemically defended? The case for marine larvae. Ecology 76P:1347–1358

    Article  Google Scholar 

  • Litman G, Cooper MD (2007) Why study the evolution of immunity? Nat Immunol 8:329–331

    Article  CAS  Google Scholar 

  • Maljkovic A, van Leeuewen TE, Cove SN (2008) Predation on the invasive red lionfish, Pterois volitans (Pisces: Scorpaenidae), by native groupers in the Bahamas. Coral Reefs 27:501

    Article  Google Scholar 

  • McFall-Ngai M (2007) Care for the community. Nature 445:153

    Article  CAS  PubMed  Google Scholar 

  • McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida Keys. Coral Reefs 17:369–375

    Article  Google Scholar 

  • McNaughton SJ, Wolf LL (1979) General ecology. Holt, Rinehart, and Winston, New York

    Google Scholar 

  • Miller DJ, Hemmrich G, Ball EE et al (2007) The innate immune repertoire in Cnidaria – ancestral complexity and stochastic gene loss. Genome Biol 8:R59–R59.13. doi:10.1186/gb-2007-8-4-r59

    Google Scholar 

  • Miller W (2007) Shipping vectors within the Gulf of Mexico and Caribbean: ballast water and hull fouling. In: Osman R, Shirley R (eds) The Gulf of Mexico and Caribbean marine invasive species workshop, Corpus Christi, Texas, 26–27 Feb 2007. Harte Research Institute, Texas A&M University at Corpus Christi, Corpus Christi, pp 12–13

    Google Scholar 

  • Mooney HA, Drake JA (eds) (1986) Ecology of biological invasions of North America and Hawaii, vol 58, Ecological studies. Springer, New York

    Google Scholar 

  • Müller WEG, Müller I, Zahn RK et al (1984) Intraspecific recognition system in scleractinian corals: morphological and cytochemical description of the autolysis mechanism. J Histochem Cytochem 32:285–288

    Article  PubMed  Google Scholar 

  • Munchhoff J, Hirose E, Maruyama T et al (2007) Host specificity and phylogeography of the prochlorophyte Prochloron sp., an obligate symbiont in didemnid ascidians. Environ Microbiol 9:890–899. doi:10.1111/j.1462-2920.2006.01209.x

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L, Greene RW (1973) Chloroplasts and algae as symbionts in molluscs. Int Rev Cytol 36:137–169. doi:10.1016/S0074-7696(08)60217-X

    Article  CAS  PubMed  Google Scholar 

  • Nichols FH, Cloern JE, Luoma SN et al (1986) The modification of an estuary. Science 231:567. doi:10.1126/science.231.4738.567

    Article  CAS  PubMed  Google Scholar 

  • NOAA (2011) NOAA coral reef conservation program, symbiotic algae. http://coralreef.noaa.gov/aboutcorals/coral101/symbioticalgae/. Accessed 2 Mar 2015

  • Norton JH, Prior HC, Baillie B et al (1995) Atrophy of the zooxanthellal tubular system in bleached giant clams Tridacna gigas. J Invertebr Pathol 66:307–310. doi:10.1006/jipa.1995.1106

    Article  Google Scholar 

  • Olson RR, Porter JW (1985) In situ measurement of photosynthesis and respiration in the ascidian-Prochloron symbiosis Didemnum molle. In: Delesalle B, Galzin R, Salvat B (eds) Proceedings of the 5th international coral reef congress, Tahiti, 27 May–1 June 1985, vol 5. Antenne Museum-EPHE, Moorea, pp 257–262

    Google Scholar 

  • Osman R, Shirley T (eds) (2007) The gulf of Mexico and Caribbean marine invasive species workshop: proceedings and final report. Harte Res Institute, Texas A&M University at Corpus Christi, Corpus Christi

    Google Scholar 

  • Ottaviani E, Valensin S, Franceschi C (1998) The neuro-immunological interface in an evolutionary perspective: the dynamic relationship between effector and recognition systems. Front Biosci 3:431–435

    Article  Google Scholar 

  • Palmer AR (1979) Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evology 33:697–713

    Article  Google Scholar 

  • Paredes Juarez GA, Spasojevic M, Faas MM et al (2014) Immunological and technical considerations in applications of alginate-based micro-encapsulation systems. Front Bioeng Biotech 2:1–15. doi:10.3389/fbioe.2014.00026

    Article  Google Scholar 

  • Parrow M, Murkholder J (2004) The sexual life cycles of Pfiesteria piscicida and Cryptoperidiniopsoids (Dinophyceae). J Phycol 40:664–673

    Article  Google Scholar 

  • Perez SF, Cook CB, Brooks WR (2001) The role of symbiotic dinoflagellates in the temperature-induced bleaching response of the subtropical sea anemone Aiptasia pallida. J Exp Mar Biol Ecol 256:1–14. doi:10.1016/S0022-0981(00)00282-3

    Article  PubMed  Google Scholar 

  • Philipp DP, Whitt GS (1991) Survival and growth of northern Florida, and reciprocal F1 hybrid largemouth bass in central Illinois. Trans Am Fish Soc 120:58–64. doi:10.1577/1548-8659(1991)120<0058:SAGONF>2.3.CO;2

    Article  Google Scholar 

  • Porto I, Granados C, Restrepo, JC, Sanchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Dobzhansky, Caribbean reefs. PloS http://dx.doi.org/10.1371/journal.pone.0002160. Accessed 26 Apr 2016

  • Precht WF, Aronson RB (2004) Climate flickers and range shifts in corals. Front Ecol Environ 2:207–314. doi: 10.1890/1540-9295(2004)002[0307:CFARSO]2.0.CO;2. Accessed 26 Apr 2016

    Google Scholar 

  • Pulley TE (1963) Texas to the tropics. Houst Geol Soc Bull 6:13–19

    Google Scholar 

  • Richmond RH, Hunter C (1990) Reproduction and recruitment of corals: comparisons between the Caribbean, the tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Riddle D (2007) An update on zooxanthellae (Symbiodinium spp), what a difference a year makes! Advanced aquarist 2007: 6. http://www.advancedaquarist.com/2006/1/AAOLM-Feature-Article-D-Riddle-Jan06-CladeList.pdf. Accessed 24 June 2015

  • Rosen BR (1988) Tectonics from fossils? Analysis of reef-coral and sea-urchin distributions from late cretaceous to recent, using a new method. Geol Soc Lond Spec Publ 37:275–306. doi:10.1144/GSL.SP.1988.037.01.19

    Article  Google Scholar 

  • Rowan R (1998) Review – diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417. doi:10.1046/j.1529-8817.1998.340407.x

    Article  Google Scholar 

  • Sachs JL, Essenberg CJ, Turcotte MM (2011) New paradigms for the evolution of beneficial infections. Trends Ecol Evol 26:202–209

    Article  PubMed  Google Scholar 

  • Sahu A, Lambris JD (2001) Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 180:35–48

    Article  CAS  PubMed  Google Scholar 

  • Sammarco PW (2007) Invasive species on oil and gas platforms in the Northern Gulf of Mexico. In: Osman R, Shirley R (eds) The Gulf of Mexico and Caribbean marine invasive species workshop, Corpus Christi, Texas, 26–27 Feb 2007. Harte Res Institute, Texas A&M University at Corpus Christi, Corpus Christi, pp 15–16

    Google Scholar 

  • Sammarco PW, Strychar KB (2009) Effects of climate change on coral reefs: adaptation/exaptation in corals, evolution in zooxanthellae, and biogeographic shifts. Environ Bioindic 4:9–45

    Article  Google Scholar 

  • Sammarco PW, Strychar KB (2013) Responses to high seawater temperatures in zooxanthellate octocorals. PLoS ONE 8(2):e54989. doi:10.1371/journal.pone.0054989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sammarco PW, Atchison AD, Boland GS (2004) Expansion of coral communities within the northern Gulf of Mexico via offshore oil and gas platforms. Mar Ecol Prog Ser 280:129–143. doi:10.3354/meps280129, Accessed 11 June 2014

    Article  Google Scholar 

  • Sammarco PW, Porter SA, Cairns SD (2010) New invasive coral species for the Atlantic Ocean: Tubastraea micranthus (Cairns and Zibrowius 1997) (Colenterata, Anthozoa, Scleractinia): a potential major threat? Aquat Invasions 5:131–140

    Article  Google Scholar 

  • Sammarco PW, Atchison AD, Boland GS et al (2012) Geographic expansion of hermatypic and ahermatypic corals in the gulf of Mexico, and implications for dispersal and recruitment. J Exp Mar Biol Ecol 436–437:36–49. doi:10.1016/j.jembe.2012.08.009. Received 3 May 2012. Accessed 11 June 2014

    Google Scholar 

  • Sammarco PW, Porter SA, Sinclair J et al (2013) Depth distribution of a new invasive coral (Gulf of Mexico) –Tubastraea micranthus, comparisons with T. coccinea, and implications for control. Manag Biol Invasions 4:291–303

    Article  Google Scholar 

  • Sammarco PW, Porter SA, Sinclair J et al (2014) Population expansion of a new invasive coral species – Tubastraea micranthus – in the northern gulf of Mexico. Mar Ecol Prog Ser 495:161–173. doi:10.3354/meps10576, Accessed 12 June 2014

    Article  Google Scholar 

  • Sand-Jensen K, Pedersen MF (2003) Photosynthesis by symbiotic algae in the freshwater sponge, Spongilla lacustris. Limnol Oceanogr 39:551–561. doi:10.4319/lo.1994.39.3.0551

    Article  Google Scholar 

  • Schoenberg DA, Trench RK (1980a) Genetic variation in Symbiodinium (= Gymnodinium) microadriaticum Freundenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum. Proc R Soc Lond B 207:405–427

    Google Scholar 

  • Schoenberg DA, Trench RK (1980b) Genetic variation in Symbiodinium (= Gymnodinium microadriaticum Freudenthal), and specificity in its symbiosis with marine invertebrates. II. Morphological variation Symbiodinium microadriaticum. Proc R Soc Lond B 207:429–444

    Google Scholar 

  • Schoenberg DA, Trench RK (1980c) Genetic variation in Symbiodinium (= Gymnodinium microadriaticum Freudenthal), and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc Lond B 207:445–460

    Google Scholar 

  • Schwarz RS, Bosch TCG, Cadavid LF (2008) Evolution of polydom-like molecules: identification and characterization of cnidarian polydom (CnPolydom) in the basal metazoan Hydractinia. Dev Comp Immunol 32:141–151. doi:10.1016/j.dci.2008.03.007

    Article  CAS  Google Scholar 

  • Shearer T (2008) Range expansion of an introduced coral: investigating the source and ecological impact of the invasion. In: 2008 ocean sciences meeting: from the watershed to the global ocean, Am Soc Limnol Oceanogr, Orlando, 2–7 Mar 2008 (Abstract). http://www.sgmeet.com/aslo/orlando2008/viewabstract2.asp?AbstractID=3298. Accessed 25 June 2015

  • Snell T, Foltz DW, Sammarco PW (1998) Morphological and genetic variation in Montastrea cavernosa (Coelenterata, Scleractinia) from the Flower Garden Banks and the Florida keys: preliminary analysis. Gulf Mexico Sci 1998:188–195

    Google Scholar 

  • Stanley SM (1979) Macroevolution: pattern and process. WH Freeman, San Francisco, pp 289–301

    Google Scholar 

  • Stanley SM (1981) Neogene mass extinction of Western Atlantic mollusks. Nat Lond 293:457–459

    Article  Google Scholar 

  • Stanley SM (1984) Mass extinctions in the ocean. Sci Am 250:46–54

    Article  Google Scholar 

  • Stanley SM (1985) Climatic cooling and Plio-Pleistocene mass extinction of mollusks around the margins of the Atlantic. S Afr J Sci 81:266

    Google Scholar 

  • Stanley SM (1986) Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios 1:17–36

    Article  Google Scholar 

  • Staros EB (2005) Innate immunity: new approaches to understanding its clinical significance. Am J Clin Pathol 123:305–312

    Article  CAS  PubMed  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts – symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Strickberger MW (1968) Genetics. Macmillan, New York

    Google Scholar 

  • Strychar KB, Sammarco PW (2009) Exaptation in corals to high seawater temperatures: low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J Exp Mar Biol Ecol 369:31–42

    Article  Google Scholar 

  • Strychar KB, Coates MC, Sammarco PW et al (2004a) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121

    Article  Google Scholar 

  • Strychar KB, Coates MC, Sammarco PW et al (2004b) Apoptotic and necrotic stages of cell death activity: bleaching of soft and scleractinian corals. Phycologia 43:768–777

    Article  Google Scholar 

  • Strychar KB, Coates MC, Scott PW et al (2005) Loss of symbiotic dinoflagellates (Symbiodinium; zooxanthellae) from bleached soft corals Sarcophyton, Sinularia, and Xenia. J Exp Mar Biol Ecol 320:159–177

    Article  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Taylor DL (1973) The cellular interactions of algal-invertebrate symbiosis. Adv Mar Biol 11:1–56

    Article  Google Scholar 

  • Thurman HV (1978) Introductory oceanography. CE Merrill Publ, Bell & Howell Co, Columbus

    Google Scholar 

  • Toledo-Hernández C, Ruiz-Diaz CP (2014) The immune responses of the coral. Invertebr Surviv J 11:319–328

    Google Scholar 

  • Valiante NM, O’Hagan DT, Ulmer JB (2003) Innate immunity and biodefense vaccines. Cell Microbiol 5:755–760

    Article  CAS  PubMed  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lond B Biol Sci 266:179–183. doi:10.1098/rspb.1999.0619

    Article  Google Scholar 

  • Vargas-Angel B, Thomas JD, Hoke SM (2003) High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22:465–473

    Article  Google Scholar 

  • Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162

    Article  Google Scholar 

  • Vermeij GJ (1976) Interoceanic differences in vulnerability of shelled prey to crab predation. Nature 260:135–136. doi:10.1038/260135a0

    Article  Google Scholar 

  • Vermeij GJ (1977) Patterns in crab claw size: the geography of crushing. Syst Biol 26:138–151. doi:10.1093/sysbio/26.2.138

    Article  Google Scholar 

  • Vermeij GJ (1978) Biogeography and adaptation, patterns, of marine life. Harvard University Press, Cambridge

    Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson, Sydney

    Google Scholar 

  • Veron JEN (1995) Corals in time and space: the biogeography and evolution of the Scleractinia. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Weil E (2002) Coral disease epizootiology: status and research needs. In: Coral health and disease: developing a national research plan. Coral Health and Disease Consortium, Charleston, South Carolina, p 14

    Google Scholar 

  • Weil E (2004) Coral reef diseases in the wider Caribbean. In: Rosenberg E, Loya Y (eds) Coral reef health and disease. Springer, Berlin, pp 35–68

    Chapter  Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology, Part F, Coelenterata. The Geological Society of America, Boulder, CO, and University Press of Kansas, Lawrence (joint publ), pp 328–444

    Google Scholar 

  • Wells JW (1957) Coral reefs. In: Hedgpeth JW (ed) Treatise on marine ecology and paleoecology, vol. I, Ecology, Mem 67. The Geological Society of America, Boulder, pp 609–631

    Google Scholar 

  • Wells JW (1973) New and old scleractinian corals from Jamaica. Coral reef project – papers in memory of Dr Thomas F Goreau 2. Bull Mar Sci 23:16–58

    Google Scholar 

  • Whitfield PE, Gardner T, Vives SP et al (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297

    Article  Google Scholar 

  • Williams DE, Miller MW (2005) Coral disease outbreak: pattern, prevalence, and transmission in Acropora cervicornis. Mar Ecol Prog Ser 301:119–128

    Article  Google Scholar 

  • Wonham MJ, Carlton JT (2005) Trends in marine biological invasions at local and regional scales: the northeast Pacific Ocean as a model system. Biol Invasions 7:369–392

    Article  Google Scholar 

  • Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38:L04601. doi:10.1029/2010GL046474

    Article  Google Scholar 

  • Zhang H, Bhattacharya B, Sin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Sammarco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sammarco, P.W., Strychar, K.B. (2016). Ecological and Evolutionary Considerations Regarding Corals in a Rapidly Changing Environment. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_34

Download citation

Publish with us

Policies and ethics