Skip to main content

Reducing Computation Time by Monte Carlo Method: An Application in Determining Axonal Orientation Distribution Function

  • Conference paper
  • First Online:
New Advances in Information Systems and Technologies

Abstract

Diffusion MRI (dMRI) is highly sensitive in detecting early cerebral ischemic changes in acute stroke, and in pre-clinical assessment of white matter (WM) anatomy using tractography, thus being an important component of health informatics. In clinical settings, the computation time is critical, and so finding forms of reducing the processing time in high computation processes such as Diffusion Spectrum Imaging (DSI) dMRI data processing is extremely relevant. We analyse here a method for reducing the computation of the dMRI-based axonal orientation distribution function h by using a Monte Carlo sampling-based methods for voxel selection, and so obtained a reduction in required data sampling of about 20 %. In this work we show that the convergence to the correct value in this type of dMRI data-processing is linear and not exponential, implying that the Monte Carlo approach in this type of dMRI data processing improves its speed, but further improvements are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96: 10422–10427. (1999).

    Google Scholar 

  2. Lori, N.F., Akbudak, E., Shimony, J.S., Cull, T.S., Snyder, A.Z., et al. Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed 15: 494―515. (2002).

    Google Scholar 

  3. Tuch, D.S. Q-ball imaging. Magn Reson Med 52: 1358– 1372. (2004).

    Google Scholar 

  4. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34: 144–155. (2007).

    Google Scholar 

  5. Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41: 1267–1277. (2008).

    Google Scholar 

  6. Raffelt, D., Tournier, J.D., Rose, S., Ridgway G.R., Henderson, R., et al. Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59: 3976–3994. (2012).

    Google Scholar 

  7. Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi. F., et al. The geometric structure of the brain fiber pathways. Science 335: 1628–1634. (2012).

    Google Scholar 

  8. Dani, A., Huang, B., Bergan, J., Dulac, C., Zhuang, X. Superresolution Imaging of Chemical Synapses in the Brain. Neuron 68: 843–856. (2010).

    Google Scholar 

  9. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489: 391–399. (2012).

    Google Scholar 

  10. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J. DMRI of Complex Neural Architecture. Neuron 40: 885–895. (2003).

    Google Scholar 

  11. Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., Markram, H. Statistical connectivity provides a sufficient foundation for specific functional connectivity in neocortical neural microcircuits. Proc Natl Acad Sci U S A 109: E2885–94. (2012).

    Google Scholar 

  12. Wang, R., Benner, T., Sorensen, A.G., Wedeen, V.J. Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Proc Intl Soc Mag Reson Med 15: 3720. (2007).

    Google Scholar 

  13. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J. AxCaliber: A method for measuring axon diameter distribution from dMRI. Magn Reson Med 59: 1347–1354. (2008).

    Google Scholar 

  14. Milne, M.L., Conradi, M.S. Multi-exponential signal decay from diffusion in a single compartment. J Magn Reson 197: 87– 90. (2009).

    Google Scholar 

  15. U.C.L.A. (n.d.) LONI Image Data Archive (IDA). Available: https://ida.loni.ucla.edu/login.jsp. Accessed 16 November 2012. (2012)

  16. Zhang, Y., Brady, M., Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20: 45–57. (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás F. Lori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lori, N.F. et al. (2016). Reducing Computation Time by Monte Carlo Method: An Application in Determining Axonal Orientation Distribution Function. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-31307-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31307-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31306-1

  • Online ISBN: 978-3-319-31307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics