Skip to main content

Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts

  • Conference paper
  • First Online:
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

Additive manufacturing (AM), more commonly referred to as 3D printing, has become increasingly popular for rapid prototyping (RP) purposes by hobbyists and academics alike. In recent years AM has transitioned from a purely RP technology to one for final product manufacturing. As the transition from RP to manufacturing becomes an increasingly accepted practice it is imperative to fully understand the properties and characteristics of the materials used in 3D printers. This paper presents the methodology and results of the mechanical characterization of acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) 3D printed parts to determine the extent of anisotropy present in 3D printed materials. Specimens were printed with varying raster ([+45/−45], [+30/−60], [+15/−75], and [0/90]) and build orientations (flat, on-edge, and up-right) to determine the directional properties of the materials. Reduced gage section tensile and Isopescu shear specimens were printed and loaded in a universal testing machine utilizing 2D digital image correlation (DIC) to measure strain. Results indicated that raster and build orientation had a negligible effect on the Young’s modulus or Poisson’s ratio in ABS tensile specimens. Shear modulus and shear yield strength varied by up to 33 % in ABS specimens signifying that tensile properties are not indicative of shear properties. Raster orientation in the flat build samples reveal anisotropic behavior in PC specimens as the moduli and strengths varied by up to 20 %. Similar variations were also observed in shear for PC. Changing the build orientation of PC specimens appeared to reveal a similar magnitude of variation in material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

ABS:

Acrylonitrile butadiene styrene

AM:

Additive manufacturing

ASTM:

American Society for Testing and Materials

CAD:

Computer aided design

CI:

Confidence interval

COV:

Coefficient of variation

DIC:

Digital image correlation

FDM:

Fused deposition modeling

PC:

Polycarbonate

RP:

Rapid prototyping

SMP:

Shape memory polymer

STL:

Stereo lithography

References

  1. Berman, B.: 3-D printing: the new industrial revolution. Bus. Horiz. 55, 155–162 (2012). doi:10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  2. Chulilla Cano, J.L.: The Cambrian explosion of popular 3D printing. Int. J. Interact. Multimed. Artif. Intell. 1, 30 (2011). doi:10.9781/ijimai.2011.145

    Google Scholar 

  3. Espalin, D., Muse, D.W., MacDonald, E., Wicker, R.B.: 3D Printing multifunctionality: structures with electronics. Int. J. Adv. Manuf. Technol. 72, 963–978 (2014). doi:10.1007/s00170-014-5717-7

    Article  Google Scholar 

  4. Chua, C.K., Leong, K.F., Lim, C.S.: Rapid Prototyping: Principles and Applications, vol. 1. World Scientific, Singapore (2003)

    Book  Google Scholar 

  5. Ge, Q., Dunn, C.K., Qi, H.J., Dunn, M.L.: Active origami by 4D printing. Smart Mater. Struct. 23, 1–15 (2014). doi:10.1088/0964-1726/23/9/094007

    Google Scholar 

  6. Ge, Q., Qi, H.J., Dunn, M.L.: Active materials by four-dimension printing. Appl. Phys. Lett. 103(3), 131901 (2013). doi:10.1063/1.4819837

    Article  Google Scholar 

  7. Raasch, J., Ivey, M., Aldrich, D., et al.: Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit. Manuf. 8, 132–141 (2015). doi:10.1016/j.addma.2015.09.004

    Article  Google Scholar 

  8. Yang, Y., Chen, Y., Wei, Y., Li, Y.: 3D printing of shape memory polymer for functional part fabrication. Int. J. Adv. Manuf. Technol. 84(9), 2079–2095 (2016). doi:10.1007/s00170-015-7843-2

    Article  Google Scholar 

  9. Bhattacharjee, T., Zehnder, S.M., Rowe, K.G., et al.: Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015). doi:10.1126/sciadv.1500655

    Article  Google Scholar 

  10. Bellini, A., Güçeri, S.: Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp. J. 9, 252–264 (2003). doi:10.1108/13552540310489631

    Article  Google Scholar 

  11. Giannatsis, J., Sofos, K., Canellidis, V., et al.: Investigating the influence of build parameters on the mechanical properties of FDM parts. Innov. Dev. Virtual. Phys. Prototyp. In: Proceedings of 5th International Conference on Advanced Research in Rapid Prototyping, pp. 525–529 (2012). doi:10.1201/b11341-85

  12. Hill, N., Haghi, M.: Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate. Rapid Prototyp. J. 20, 221–227 (2014). doi:10.1108/RPJ-04-2013-0039

    Article  Google Scholar 

  13. Tymrak, B.M., Kreiger, M., Pearce, J.M.: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater. Des. 58, 242–246 (2014). doi:10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  14. Wittbrodt, B., Pearce, J.M.: The effects of PLA color on material properties of 3-D printed components. Addit. Manuf. 8, 110–116 (2015). doi:10.1016/j.addma.2015.09.006

    Article  Google Scholar 

  15. Torrado Perez, A.R., Roberson, D.A., Wicker, R.B.: Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J. Fail. Anal. Prev. 14, 343–353 (2014). doi:10.1007/s11668-014-9803-9

    Article  Google Scholar 

  16. Torrado, A.R., Shemelya, C.M., English, J.D., et al.: Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit. Manuf. 6, 16–29 (2015). doi:10.1016/j.addma.2015.02.001

    Article  Google Scholar 

  17. Es-Said, O.S., Foyos, J., Noorani, R., et al.: Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater. Manuf. Process 15(1), 107–122 (2007)

    Article  Google Scholar 

  18. Ahn, S.H., Baek, C., Lee, S., Ahn, I.S.: Anisotropic tensile failure model of rapid prototyping parts—fused deposition modeling (FDM). Int. J. Mod. Phys. B 17, 1510–1516 (2003). doi:10.1142/S0217979203019241

    Article  Google Scholar 

  19. Ahn, S.-H., Montero, M., Odell, D., et al.: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8, 248–257 (2002). doi:10.1108/13552540210441166

    Article  Google Scholar 

  20. Montero, M., Roundy, S., Odell, D.: Material characterization of fused deposition modeling (FDM) ABS by designed experiments. In: Proceedings of Rapid Prototyping and Manufacturing Conference, pp. 1–21 (2001)

    Google Scholar 

  21. Rodrıguez, J.F., Thomas, J.P., Renaud, J.E.: Design of fused-deposition ABS components for stiffness and strength. J. Mech. Des. 125, 545 (2003). doi:10.1115/1.1582499

    Article  Google Scholar 

  22. Torrado Perez, A.R.: Defeating Anisotropy in Material Extrusion 3D Printing Via Materials Development. University of Texas at El Paso, El Paso (2015)

    Google Scholar 

  23. Shaffer, S., Yang, K., Vargas, J., et al.: On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer (United Kingdom) 55, 5969–5979 (2014). doi:10.1016/j.polymer.2014.07.054

    Google Scholar 

  24. Ziemian, C., Sharma, M., Ziemian, S.: Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech. Eng. 23, 167–180 (2012). doi:10.5772/34233

    Google Scholar 

  25. Lee, C.S., Kim, S.G., Kim, H.J., Ahn, S.H.: Measurement of anisotropic compressive strength of rapid prototyping parts. J. Mater. Process. Technol. 187–188, 627–630 (2007). doi:10.1016/j.jmatprotec.2006.11.095

    Article  Google Scholar 

  26. Sood, A.K., Ohdar, R.K., Mahapatra, S.S.: Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater. Des. 31, 287–295 (2010). doi:10.1016/j.matdes.2009.06.016

    Article  Google Scholar 

  27. Lee, S., Munro, M.: Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique. Composites 17, 13–22 (1986). doi:10.1016/0010-4361(86)90729-9

    Article  Google Scholar 

  28. Iosipescu, N.: New accurate procedure for single shear testing of metals. J. Mater. 2, 537–566 (1967)

    Google Scholar 

  29. Walrath, D.E., Adams, D.F.: The losipescu shear test as applied to composite materials. Exp. Mech. 23, 105–110 (1983). doi:10.1007/BF02328688

    Article  Google Scholar 

  30. Adams, D.F., Walrath, D.E.: Further development of the losipescu shear test method. Exp. Mech. 27, 113–119 (1987). doi:10.1007/BF02319461

    Article  Google Scholar 

  31. Adams, D., Lewis, E.: Current status of composite material shear test methods. SAMPE 31, 32–41 (1995)

    Google Scholar 

  32. Arcan, M.: A new method for the analysis of mechanical properties of composite materials. In: Third International Congress on Experimental Mechanics (1973)

    Google Scholar 

  33. Arcan, M., Hashin, Z., Voloshin, A.: A method to produce uniform plane-stress states with applications to fiber-reinforced materials. A specially designed specimen yields material properties under pure shear or uniform plane-stress conditions. Exp. Mech. 18, 141–146 (1978). doi:10.1007/BF02324146

    Article  Google Scholar 

  34. ASTM International.: ASTM D7078/7078M-12 Standard Test Method for Shear Properties of Composite Materials by V-Notched Rail. 15 (2012) doi:10.1520/D7078

  35. Whitney, J.M., Stransbarger, D.L., Howell, H.B.: Analysis of the rail shear test—applications and limitations. J. Compos. Mater. 5, 24–34 (1971). doi:10.1128/JB.183.6.1909

    Article  Google Scholar 

  36. Garcia, R., Weisshaar, T.A., McWithey, R.R.: An experimental and analytical investigation of the rail shear-test method as applied to composite materials. Exp. Mech. 20, 273–279 (1980). doi:10.1007/BF02328411

    Article  Google Scholar 

  37. Ifju, P.G.: The shear gage: for reliable shear modulus measurements of composite materials. Exp. Mech. 34, 369–378 (1994)

    Article  Google Scholar 

  38. Micro-Measurements Division MGI.: Strain Gages for Shear Modulus Testing of Composite Materials (1995)

    Google Scholar 

  39. Fang, Q.Z., Wang, T.J., Beom, H.G., Li, H.M.: Effect of cyclic loading on tensile properties of PC and PC/ABS. Polym. Degrad. Stab. 93, 1422–1432 (2008). doi:10.1016/j.polymdegradstab.2008.05.022

    Article  Google Scholar 

  40. Fang, Q.Z., Wang, T.J., Li, H.M.: Large tensile deformation behavior of PC/ABS alloy. Polymer (Guildf) 47, 5174–5181 (2006). doi:10.1016/j.polymer.2006.04.069

    Article  Google Scholar 

  41. Daiyan, H., Andreassen, E., Grytten, F., et al.: Shear testing of polypropylene materials analysed by digital image correlation and numerical simulations. Exp. Mech. 52, 1355–1369 (2012). doi:10.1007/s11340-012-9591-7

    Article  Google Scholar 

  42. Qin, L., Zhang, Z., Li, X., et al.: Full-field analysis of shear test on 3D orthogonal woven C/C composites. Compos. Part A Appl. Sci. Manuf. 43, 310–316 (2012). doi:10.1016/j.compositesa.2011.11.006

    Article  Google Scholar 

  43. ASTM International.: Standard test method for tensile properties of plastics. Annu. B ASTM Stand. 1–15 (2004). doi:10.1520/D0638-14.1

  44. ASTM International.: (2011) Standard test method for shear properties of composite materials by the V-notched beam method. Annu. B ASTM Stand. 1–13. doi:10.1520/D5379

  45. Smith, W.C., Dean, R.W.: Structural characteristics of fused deposition modeling polycarbonate material. Polym. Test. 32, 1306–1312 (2013). doi:10.1016/j.polymertesting.2013.07.014

    Article  Google Scholar 

  46. Sutton, M.A.: Springer Handbook of Experimental Solid Mechanics. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA (2008)

    Google Scholar 

  47. Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Science & Business Media, New York (2009)

    Google Scholar 

  48. Sutton, M.A., Turner, J.L., Bruck, H.A., Chae, T.A.: Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp. Mech. 31, 168–177 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Cantrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Cantrell, J. et al. (2017). Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts. In: Yoshida, S., Lamberti, L., Sciammarella, C. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41600-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41600-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41599-4

  • Online ISBN: 978-3-319-41600-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics