Skip to main content

Paediatric Robotic Surgery: Complications

  • Chapter
  • First Online:
Pediatric Robotic Surgery

Abstract

Robotic surgery has been introduced to extend the capabilities of surgeons and address the difficulties and morbidities encountered with laparoscopic surgery (minimal access surgery). The application of robotics to the fields of urological, gastrointestinal, thoracic and trans-oral surgery in children has become increasingly popular since Meininger et al. reported the first case of paediatric robotic Nissen’s fundoplication in 2001 [1]. Although great advantages are conferred to the operating surgeon through 3D panoramic high resolution view with depth perception, increased magnification, ability to directly control a stable visual field, increased freedom of movement provided by the multi-jointed instruments, motion scaling and remote nature of operating, robotic surgery in children presents a specific set of associated complications. Most of these are minor and do not significantly alter the outcome. Other complications are similar to those learnt during open and conventional laparoscopic techniques. Prevention is better than cure, and most complications can be avoided by the alert and trained robotic surgeon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meininger DD, Byhahn C, Heller K, Gutt CN, Westphal K. Totally endoscopic Nissen fundoplication with a robotic system in a child. Surg Endosc. 2001;15(11):1360.

    Article  CAS  PubMed  Google Scholar 

  2. Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K, Gattas NE, Najmaldin A, Yang GZ, Darzi A. The first decade of robotic surgery in children. J Pediatr Surg. 2013;48(4):858–65.

    Article  PubMed  Google Scholar 

  3. Adikibi BT, Mackinlay GA, Clark MC, Duthie GH, Munro FD. The risks of minimal access surgery in children: an aid to consent. J Pediatr Surg. 2012;47(3):601–5.

    Article  PubMed  Google Scholar 

  4. te Velde EA, Bax NM, Tytgat SH, de Jong JR, Travassos DV, Kramer WL, van der Zee DC. Minimally invasive pediatric surgery: increasing implementation in daily practice and resident’s training. Surg Endosc. 2008;22(1):163–6.

    Article  Google Scholar 

  5. Dangle PP, Akhavan A, Odeleye M, Avery D, Lendvay T, Koh CJ, Elder JS, Noh PH, Bansal D, Schulte M, MacDonald J, Shukla A, Kim C, Herbst K, Corbett S, Kearns J, Kunnavakkam R, Gundeti MS. Ninety-day perioperative complications of pediatric robotic urological surgery: a multi-institutional study. J Pediatr Urol. 2016;12(2):102.e1–6.

    Article  CAS  Google Scholar 

  6. Hsu RL, Kaye AD, Urman RD. Anesthetic challenges in robotic-assisted urologic surgery. Rev Urol. 2013;15(4):178–84.

    PubMed  PubMed Central  Google Scholar 

  7. Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One. 2016;11(4):e0151470.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Najmaldin A, Antao B. Early experience of tele-robotic surgery in children. Int J Med Robot. 2007;3(3):199–202.

    Article  CAS  PubMed  Google Scholar 

  9. Iranmanesh P, Morel P, Wagner OJ, Inan I, Pugin F, Hagen ME. Set-up and docking of the da Vinci surgical system: prospective analysis of initial experience. Int J Med Robot. 2010;6(1):57–60.

    PubMed  Google Scholar 

  10. Iranmanesh P, Morel P, Buchs NC, Pugin F, Volonte F, Kreaden US, Hagen ME. Docking of the da Vinci Si Surgical System® with single-site technology. Int J Med Robot. 2013;9(1):12–6.

    Google Scholar 

  11. Bruns NE, Soldes OS, Ponsky TA. Robotic surgery may not “Make the Cut” in pediatrics. Front Pediatr. 2015;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chang C, Steinberg Z, Shah A, Gundeti MS. Patient positioning and port placement for Robotic-Assisted Surgery. J Endourol. 2014;28(6):631–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chao SYC, Tan HL. General principles of laparoscopic access. In: Spitz L, Coran A, editors. Operative paediatric surgery. 7th ed. New York: CRC Press; 2014. p. 333–6.

    Google Scholar 

  14. Passerotti CC, Nguyen HT, Retik AB, Peters CA. Patterns and predictors of laparoscopic complications in pediatric urology: the role of ongoing surgical volume and access techniques. J Urol. 2008;180(2):681–5.

    Article  PubMed  Google Scholar 

  15. Ahmad G, O’Flynn H, Duffy JMN, Phillips K, Watson A. Laparoscopic entry techniques. Cochrane Database of Systematic Reviews 2012, Issue 2. Art. No.: CD006583.

    Google Scholar 

  16. Epstein J, Arora A, Ellis H. Surface anatomy of the inferior epigastric artery in relation to laparoscopic injury. Clin Anat. 2004;17(5):400–8.

    Article  CAS  PubMed  Google Scholar 

  17. Usal H, Sayad P, Hayek N, Hallak A, Huie F, Ferzli G. Major vascular injuries during laparoscopic cholecystectomy. An institutional review of experience with 2589 procedures and literature review. Surg Endosc. 1998;12(7):960–2.

    Article  CAS  PubMed  Google Scholar 

  18. Mattei P, Tyler DC. Carbon dioxide embolism during laparoscopic cholecystectomy due to a patent paraumbilical vein. J Pediatr Surg. 2007;42(3):570–2.

    Article  PubMed  Google Scholar 

  19. Ott DE. Subcutaneous emphysema—beyond the pneumoperitoneum. JSLS. 2014;18(1):1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wagner CR, Howe RD. Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans Robot. 2007;23(6):1235–40.

    Article  Google Scholar 

  21. Meccariello G, Faedi F, AlGhamdi S, Montevecchi F, Firinu E, Zanotti C, Cavaliere D, Gunelli R, Taurchini M, Amadori A, Vicini C. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg. 2016;10(1):57–61.

    Article  PubMed  Google Scholar 

  22. Cundy TP, Gattas NE, Yang GZ, Darzi A, Najmaldin AS. Experience related factors compensate for haptic loss in robot-assisted laparoscopic surgery. J Endourol. 2014;28(5):532–8.

    Article  PubMed  Google Scholar 

  23. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009;19(1):102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cormier B, Nezhat F, Sternchos J, Sonoda Y, Leitao MM Jr. Electrocautery-associated vascular injury during robotic-assisted surgery. Obstet Gynecol. 120(2 Pt 2):491–3.

    Google Scholar 

  25. Miyake H, Kawabata G, Gotoh A, Fujisawa M, Okada H, Arakawa S, Kamidono S, Hara I. Comparison of surgical stress between laparoscopy and open surgery in the field of urology by measurement of humoral mediators. Int J Urol. 2002;9(6):329–33.

    Article  PubMed  Google Scholar 

  26. Marucci DD, Shakeshaft AJ, Cartmill JA, Cox MR, Adams SG, Martin CJ. Grasper trauma during laparoscopic cholecystectomy. Aust N Z J Surg. 2000;70(8):578–81.

    Article  CAS  PubMed  Google Scholar 

  27. Bansal D, Defoor WR Jr, Reddy PP, Minevich EA, Noh PH. Complications of robotic surgery in pediatric urology: a single institution experience. Urology. 2013;82(4):917–20.

    Article  PubMed  Google Scholar 

  28. Camps JI. The use of robotics in pediatric surgery: my initial experience. Pediatr Surg Int. 2011;27(9):991–6.

    Article  PubMed  Google Scholar 

  29. Marhuenda C, Giné C, Asensio M, Guillén G, Martínez Ibáñez V. Robotic surgery: first pediatric series in Spain. Cir Pediatr. 2011;24(2):90–2.

    CAS  PubMed  Google Scholar 

  30. Andonian S, Okeke Z, Okeke DA, Rastinehad A, Vanderbrink BA, Richstone L, Lee BR. Device failures associated with patient injuries during robot-assisted laparoscopic surgeries: a comprehensive review of FDA MAUDE database. Can J Urol. 2008;15(1):3912–6.

    PubMed  Google Scholar 

  31. Nayyar R, Gupta NP. Critical appraisal of technical problems with robotic urological surgery. BJU Int. 2010;105(12):1710–3.

    Article  PubMed  Google Scholar 

  32. Zorn KC, Gofrit ON, Orvieto MA, Mikhail AA, Galocy RM, Shalhav AL, Zagaja GP. Da Vinci robot error and failure rates: single institution experience on a single three-arm robot unit of more than 700 consecutive robot-assisted laparoscopic radical prostatectomies. J Endourol. 2007;21(11):1341–4.

    Article  PubMed  Google Scholar 

  33. Bhama AR, Wafa AM, Ferraro J, Collins SD, Mullard AJ, Vandewarker JF, Krapohl G, Byrn JC, Cleary RK. Comparison of risk factors for unplanned conversion from laparoscopic and robotic to open colorectal surgery using the Michigan Surgical Quality Collaborative (MSQC) Database. J Gastrointest Surg. 2016;20(6):1223–30.

    Article  PubMed  Google Scholar 

  34. Jiménez Rodríguez RM, De la Portilla De Juan F, Díaz Pavón JM, Rodríguez Rodríguez A, Prendes Sillero E, Cadet Dussort JM, Padillo J. Analysis of conversion factors in robotic-assisted rectal cancer surgery. Int J Color Dis. 2014;29(6):701–8.

    Article  Google Scholar 

  35. Draper K, Jefson R, Jongeward R Jr, McLeod M. Duration of postlaparoscopic pneumoperitoneum. Surg Endosc. 1997;11(8):809–11.

    Article  CAS  PubMed  Google Scholar 

  36. Smith KS, Wilson TC, Luces L, Stevenson AA, Hajhosseini B, Siram SM. Pneumoperitoneum 48 days after laparoscopic hysterectomy. JSLS. 2013;17(4):661–4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hermsen ED, Hinze T, Sayles H, Sholtz L, Rupp ME. Incidence of surgical site infection associated with robotic surgery. Infect Control Hosp Epidemiol. 2010;31(8):822–7.

    Article  PubMed  Google Scholar 

  38. Tapscott A, Kim SS, White S, Graves R, Kraft K, Casale P. Port-site complications after pediatric urologic robotic surgery. J Robot Surg. 2009;3:187.

    Article  PubMed  Google Scholar 

  39. Cost NG, Lee J, Snodgrass WT, Harrison CB, Wilcox DT, Baker LA. Hernia after pediatric urological laparoscopy. J Urol. 2010;183(3):1163–7.

    Article  PubMed  Google Scholar 

  40. Paya K, Wurm J, Fakhari M, Felder-Puig R, Puig S. Trocar-site hernia as a typical postoperative complication of minimally invasive surgery among preschool children. Surg Endosc. 2008;22(12):2724–7.

    Article  CAS  PubMed  Google Scholar 

  41. Mufarrij PW, Woods M, Shah OD, Palese MA, Berger AD, Thomas R, Stifelman MD. Robotic dismembered pyeloplasty: a 6-year, multi-institutional experience. J Urol. 2008;180(4):1391–6.

    Article  PubMed  Google Scholar 

  42. Gupta NP, Nayyar R, Hemal AK, Mukherjee S, Kumar R, Dogra PN. Outcome analysis of robotic pyeloplasty: a large single-centre experience. BJU Int. 2010;105(7):980–3.

    Article  PubMed  Google Scholar 

  43. Minnillo BJ, Cruz JA, Sayao RH, Passerotti CC, Houck CS, Meier PM, Borer JG, Diamond DA, Retik AB, Nguyen HT. Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J Urol. 2011;185(4):1455–60.

    Article  PubMed  Google Scholar 

  44. Schwentner C, Pelzer A, Neururer R, Springer B, Horninger W, Bartsch G, Peschel R. Robotic Anderson-Hynes pyeloplasty: 5-year experience of one centre. BJU Int. 2007;100(4):880–5.

    Article  PubMed  Google Scholar 

  45. Hemal AK, Mishra S, Mukharjee S, Suryavanshi M. Robot assisted laparoscopic pyeloplasty in patients of ureteropelvic junction obstruction with previously failed open surgical repair. Int J Urol. 2008;15(8):744–6.

    Article  PubMed  Google Scholar 

  46. Cundy TP, Rowland SP, Gattas NE, White AD, Najmaldin AS. The learning curve of robot-assisted laparoscopic fundoplication in children: a prospective evaluation and CUSUM analysis. Int J Med Robot. 2015;11(2):141–9.

    Article  PubMed  Google Scholar 

  47. Tolboom RC, Draaisma WA, Broeders IA. Evaluation of conventional laparoscopic versus robot-assisted laparoscopic redo hiatal hernia and antireflux surgery: a cohort study. J Robot Surg. 2016;10(1):33–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cooper MA, Ibrahim A, Lyu H, Makary MA. Underreporting of robotic surgery complications. J Healthc Qual. 2015;37(2):133–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin Y. Wang M.R.C.S.(Eng) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, K.Y., Alizai, N., Najmaldin, A. (2017). Paediatric Robotic Surgery: Complications. In: Mattioli, G., Petralia, P. (eds) Pediatric Robotic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-41863-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41863-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41862-9

  • Online ISBN: 978-3-319-41863-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics