Skip to main content

Composite Production and Industrial Robot Trajectory Calculation

  • Conference paper
  • First Online:
Advances in Mechanism Design II

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 44))

Abstract

This paper discusses the problem of composite production. Composites often supplant traditional materials such as steel, iron, wood, etc. The most important advantages of composites are their high strength and flexibility, low weight, long lifespan and minimum maintenance. The technology used in this article is based on a winding of a carbon (or a glass) filament rovings on a polyurethane core which is a frame shape in 3D space with a circular cross section. The polyurethane frame is fastened to the robot-end-effector of the robot arm and during the winding process goes through a fiber-processing head on the basis of the suitably determined robot-end-effector trajectory. The fiber-processing head is fixed in robot working space and is composed of three guide lines with coils of carbon rovings. Quality production of described type of composite depends primarily on the correct winding of fibers on a polyurethane frame. It is especially needed to ensure the correct angles of the fibers winding on a polyurethane frame and the homogeneity of individual winding layers. The polyurethane frame is specified in the local Euclidean coordinate system E3, the origin of this system is in the robot-end-effector. We use the matrix calculus to enumerate the trajectory of the robot-end-effector to determine the desired passage of the frame through the fiber-processing head. A practical example of the passage of a polyurethane frame through fiber-processing head is dealt with in the article. Of course, the determining calculation of the robot trajectory can be used in other applications of industrial robot use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gay, D., Hoa, S.V.: Composite Materials—Design and Applications, p. 550. CRC press, Taylor & Francis Group London (2007). ISBN 978-1-4200-4519-2

    Google Scholar 

  2. Agarwal, B.D., Broutman, L.J., Chandrashekhara, K.: Analysis and Performance of Fiber Composites, 3rd edn., p. 576 (2006). ISBN 978-0-471-26891-8

    Google Scholar 

  3. Groppe, D.: Robots improve the quality and cost effectiveness of composite structures. Ind. Robot: Int. J. 27(2), 96–102 (2000)

    Article  Google Scholar 

  4. Hana, P., Inneman, A., Daniel, V., Sieger, L., Petrů, M.: Mechanical properties of carbon fiber composites for applications in space. In: Proceedings of SPIE 9442, Optics and Measurement Conference 2014, 7 Jan 2015. doi:10.1117/12.2175925

  5. Shirinzadech, B., Cassidy, G., Oetomo, D., Alici, G., Ang, M.H.: Trajectory generation for open-contoured structures in robotic fibre placement. Robot. Comput.-Integr. Manuf. 23, 380–394 (2007)

    Google Scholar 

  6. Martinec, T., Mlýnek, J., Petrů, M.: Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames. Robot.Comput.-Integr. Manuf. 35, 42–54 (2015). doi:10.1016/j.rcim.2015.02.004

    Article  Google Scholar 

Download references

Acknowledgments

The research work reported here was made possible by project LO1201 financed with co-funding from the Ministry of Education, Youth and Sports as part of targeted support from the “National Sustainability Program I” programme, and “GESHER/MOST LJ14005—New applications in production technology and the use of composite frames fiber reinforced composites”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Martinec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Martinec, T., Mlýnek, J., Petrů, M. (2017). Composite Production and Industrial Robot Trajectory Calculation. In: Beran, J., Bílek, M., Žabka, P. (eds) Advances in Mechanism Design II. Mechanisms and Machine Science, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-44087-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44087-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44086-6

  • Online ISBN: 978-3-319-44087-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics