Skip to main content

Changes in Primary Production and Carbon Sequestration after Plant Invasions

  • Chapter
  • First Online:
Impact of Biological Invasions on Ecosystem Services

Part of the book series: Invading Nature - Springer Series in Invasion Ecology ((INNA,volume 12))

Abstract

The potential differences in ecophysiological traits between native and invasive plants can change ecosystem functioning. In this chapter, we discuss the effects of plant invasions on ecosystem carbon (C) cycling in both terrestrial and aquatic ecosystems. In general, plant invasions increase ecosystem C fluxes and pool sizes. Most experiments testing plant invasion effects on C cycling have focused primarily on plant aboveground production and its associated processes, especially in terrestrial ecosystems. The impacts of plant invasions on belowground C cycling are relatively poorly understood, especially belowground C decomposition and the associated root effects and microbial processes. In addition, most experiments have been conducted to examine the effects of plant invasions on C sequestration in laboratory or small-scale field conditions, whereas ecosystem-scale experiments are underrepresented. This chapter highlights the need for multifactorial experimental approaches to understanding invasion-induced changes in ecosystem C processes in the context of multiple global environmental changes. The combination of experimental and modelling studies will help to predict feedbacks between plant invasions and ecosystem C cycling in a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia (Berl) 121:183–192

    Article  Google Scholar 

  • Bastlová D, KvÄ›t J (2002) Differences in dry weight partitioning and flowering phenology between native and non-native plants of purple loosestrife (Lythrum salicaria L.). Flora 197:332–340

    Article  Google Scholar 

  • Blumenthal DM, Resco V, Morgan JA et al (2013) Invasive forb benefits from water savings by native plants and carbon fertilization under elevated CO2 and warming. New Phytol 200:1156–1165

    Article  CAS  PubMed  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS et al (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Bu NS, Qu JF, Li ZL et al (2015) Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River Estuary, China. PLoS One 10

    Google Scholar 

  • Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91:2705–2715

    Article  PubMed  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species, and if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Feng YL, Lei YB, Wang RF et al (2009) Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc Natl Acad Sci USA 106:1853–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridley JD (2012) Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature (Lond) 485:359–362

    Article  CAS  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature (Lond) 446:1079–1081

    Article  CAS  Google Scholar 

  • Hussner A (2009) Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res 49:506–515

    Article  Google Scholar 

  • Hussner A (2012) Alien aquatic plant species in European countries. Weed Res 52:297–306

    Article  Google Scholar 

  • Jiang LF, Luo YQ, Chen JK et al (2009) Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuar Coast Shelf Sci 81:74–82

    Article  Google Scholar 

  • Kao-Kniffin J, Freyre DS, Balser TC (2010) Methane dynamics across wetland plant species. Aquat Bot 93:107–113

    Article  CAS  Google Scholar 

  • Kelly DJ, Hawes I (2005) Effects of invasive macrophytes on littoral-zone productivity and foodweb dynamics in a New Zealand high-country lake. J N Am Benthol Soc 24:300–320

    Article  Google Scholar 

  • Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2014. Earth Syst Sci Data 7:47–85

    Article  Google Scholar 

  • Leishman MR, Haslehurst T, Ares A et al (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643

    Article  CAS  PubMed  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF et al (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–1361

    Article  CAS  Google Scholar 

  • Liao CZ, Peng RH, Luo YQ et al (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Mauritz M, Lipson D (2013) Altered phenology and temperature sensitivity of invasive annual grasses and forbs changes autotrophic and heterotrophic respiration rates in a semi-arid shrub community. Biogeosci Discuss 10:6335–6375

    Article  Google Scholar 

  • Nagel JM, Griffin KL (2001) Construction cost and invasive potential: comparing Lythrum salicaria (Lythraceae) with co-occurring native species along pond banks. Am J Bot 88:2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Prater M, Obrist D, Arnone J III et al (2006) Net carbon exchange and evapotranspiration in postfire and intact sagebrush communities in the Great Basin. Oecologia (Berl) 146:595–607

    Article  Google Scholar 

  • Sage RF, Monson RK (1999) Preface. In: Monson RFSK (ed) C4 plant biology. Academic Press, San Diego, pp xiii–xv

    Chapter  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S et al (2011) Persistence of soil organic matter as an ecosystem property. Nature (Lond) 478:49–56

    Article  CAS  Google Scholar 

  • Sorte CJB, Ibañez I, Blumenthal DM et al (2013) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270

    Article  PubMed  Google Scholar 

  • Vourlitis GL, Kroon JL (2013) Growth and resource use of the invasive grass, pampas grass (Cortaderia selloana), in response to nitrogen and water availability. Weed Sci 61:117–125

    Article  CAS  Google Scholar 

  • Yamashita N, Ishida A, Kushima H et al (2000) Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia (Berl) 125:412–419

    Article  Google Scholar 

  • Yuan J, Ding W, Liu D et al (2014) Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Change Biol 21(4):1567–1580

    Article  Google Scholar 

  • Zhou L, Yin S, An S et al (2014) Spartina alterniflora invasion alters carbon exchange and soil organic carbon in Eastern salt marsh of China. CLEAN Soil, Air, Water 42:1–8

    Google Scholar 

Download references

Acknowledgments

We thank M. Vilà and two anonymous reviewers for comments on an earlier draft of this chapter. This research was financially supported by National Basic Research Program of China (Grant No. 2013CB430404), National Science Foundation of China (Grant No. 41630528 and 31670491), the Science and Technology Commission of Shanghai Municipality (Grant No. 14DZ1206003), and Shanghai Pujiang Scholar Program (Grant No. 16PJ1400900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nie, M., Shang, L., Liao, C., Li, B. (2017). Changes in Primary Production and Carbon Sequestration after Plant Invasions. In: Vilà, M., Hulme, P. (eds) Impact of Biological Invasions on Ecosystem Services. Invading Nature - Springer Series in Invasion Ecology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-45121-3_2

Download citation

Publish with us

Policies and ethics