Skip to main content

Improving Soil Fertility and Soil Functioning in Cover Cropped Agroecosystems with Symbiotic Microbes

  • Chapter
  • First Online:
Agro-Environmental Sustainability

Abstract

Cover cropping with graminoids or legumes represents an important strategy in agricultural production systems for the improvement of soil fertility and soil functioning. The organic carbon derived from both aboveground littering and root deposition of cover crops can greatly regulate the functional microbial groups involved in the substance cycling of nitrogen, carbon, and phosphorus. This regulation normally improves soil quality from a long-term perspective, and the effects can vary much depending on cover crop species or soil types. On the other hand, symbiotic microbes, such as arbuscular mycorrhizal fungi and rhizobia, can bring great benefits to cover crops and the associated soils. They regulate the soil fertility and soil functioning via the direct effects on native soil microbial communities or the indirect effects through altered plant growth of cover crops. Recently, the synergic effects of cover crops and symbiotic microbes are explored, and the combination of cover cropping and symbiotic microbial inoculation is emerging as a potential technology for sustainable agriculture, mainly in the horticulture area. This chapter reviews the recent progresses in the improvement of soil fertility and soil functioning with cover crops via the soil functional microbial groups, with special focus on the addictive effects of symbiotic microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol 15(1):37–47

    Article  Google Scholar 

  • Aguilera E, Lassaletta L, Gattinger A et al (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ 168:25–36

    Article  Google Scholar 

  • Arnhold S, Lindner S, Lee B et al (2014) Conventional and organic farming: soil erosion and conservation potential for row crop cultivation. Geoderma 219:89–105

    Article  Google Scholar 

  • Arthurson V, Jäderlund L (2011) Utilization of natural farm resources for promoting high energy efficiency in low-input organic farming. Energies 4(5):804–817

    Article  Google Scholar 

  • Balota EL, Auler PAM (2011) Soil carbon and nitrogen mineralization under different tillage systems and permanent groundcover cultivation between orange trees. Rev Bras Frutic 33(2):637–648

    Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285

    Article  Google Scholar 

  • Basche AD, Miguez FE, Kaspar TC et al (2014) Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J Soil Water Conserv 69(6):471–482

    Article  Google Scholar 

  • Baumhardt RL, Stewart BA, Sainju UM (2015) North American soil degradation: processes, practices, and mitigating strategies. Sustainability 7(3):2936–2960

    Article  CAS  Google Scholar 

  • Bending GD, Lincoln SD (2000) Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products. Soil Biol Biochem 32(8):1261–1269

    Article  CAS  Google Scholar 

  • Bengtsson J, Ahnström J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42(2):261–269

    Article  Google Scholar 

  • Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Springer, Basel, pp 71–85

    Chapter  Google Scholar 

  • Bodner G, Loiskandl W, Buchan G et al (2008) Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma 146(1–2):317–325

    Article  Google Scholar 

  • Bolan N, Kunhikrishnan A, Gibbs J (2013) Rhizoreduction of arsenate and chromate in Australian native grass, shrub and tree vegetation. Plant Soil 367(1–2):615–625

    Article  CAS  Google Scholar 

  • Boswell EP, Koide RT, Shumway DL, Addy HD (1998) Winter wheat cover cropping, VA mycorrhizal fungi, and maize growth and yield. Agric Ecosyst Environ 67:55–65

    Article  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F et al (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  CAS  Google Scholar 

  • Brown PD, Morra MJ (2009) Brassicaceae tissues as inhibitors of nitrification in soil. J Agric Food Chem 57(17):7706–7711

    Article  CAS  Google Scholar 

  • Bünemann EK, Smithson PC, Jama B et al (2004) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264(1–2):195–208

    Article  Google Scholar 

  • Burger M, Jackson LE, Lundquist EJ et al (2005) Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes. Biol Fert Soils 42(2):109–118

    Article  CAS  Google Scholar 

  • Buyer JS, Teasdale JR, Roberts DP et al (2010) Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol Biochem 42(5):831–841

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57(4):1071–1076

    Article  CAS  Google Scholar 

  • Card SD, Rolston MP, Lloyd-West C et al (2014) Novel perennial ryegrass-neotyphodium endophyte associations: relationships between seed weight, seedling vigour and endophyte presence. Symbiosis 62(1):51–62

    Article  Google Scholar 

  • Carrera LM, Buyer JS, Vinyard B et al (2007) Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Appl Soil Ecol 37(3):247–255

    Article  Google Scholar 

  • Casas C, Omacini M, Susana Montecchia M et al (2011) Soil microbial community responses to the fungal endophyte Neotyphodium in italian ryegrass. Plant Soil 340(1–2):347–355

    Article  CAS  Google Scholar 

  • Cheminingwa GN, Vessey JK (2006) The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol Biochem 38(2):294–302

    Article  CAS  Google Scholar 

  • Chen Y, Wen X, Sun Y et al (2014) Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci Hortic 172:248–257

    Article  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Cuello JP, Hwang HY, Gutierrez J et al (2015) Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl Soil Ecol 91:48–57

    Article  Google Scholar 

  • Cui H, Zhou Y, Gu Z et al (2015) The combined effects of cover crops and symbiotic microbes on phosphatase gene and organic phosphorus hydrolysis in subtropical orchard soils. Soil Biol Biochem 82:119–126

    Article  CAS  Google Scholar 

  • Dalal RC, Wang W, Robertson GP et al (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Res 41(2):165–195

    Article  CAS  Google Scholar 

  • Davidová T, Dostál T, David V et al (2015) Determining the protective effect of agricultural crops on the soil erosion process using a field rainfall simulator. Plant Soil Environ 61(3):109–115

    Article  Google Scholar 

  • De Bruin JL, Jordan NR, Porter PM et al (2006) Soil microbiota effects on rye growth: implications for integration of a rye cover crop into temperate cropping systems. Renew Agric Food Syst 21(4):245–252

    Article  Google Scholar 

  • Deguchi S, Uozumi S, Touno E et al (2012) Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Sci Plant Nutr 58(2):169–172

    Article  CAS  Google Scholar 

  • De Neergaard A, Gorissen A (2004) Carbon allocation to roots, rhizodeposits and soil after pulse labelling: a comparison of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). Biol Fert Soils 39(4):228–234

    Article  CAS  Google Scholar 

  • Dinesh R, Ghoshal Chaudhuri S, Sheeja Shiva KN (2009) Soil microbial activity and biomass is stimulated by leguminous cover crops. J Plant Nutr Soil Sci 172(2):288–296

    Article  CAS  Google Scholar 

  • Dinesh R, Suryanarayana MA, Chaudhuri SG et al (2006) Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur J Soil Biol 42(3):147–157

    Article  CAS  Google Scholar 

  • Diouf M, Baudoin E, Dieng L et al (2010) Legume and gramineous crop residues stimulate distinct soil bacterial populations during early decomposition stages. Can J Soil Sci 90(2):289–293

    Article  CAS  Google Scholar 

  • Douds DD Jr, Johnson NC (2007) Contributions of arbuscular mycorrhizas to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility—a key to sustainable land use in agriculture. Springer, Dordrecht, pp 129–162

    Google Scholar 

  • EEA (2007) Progress in management of contaminated sites (CSI015)—May 2007 assessment. European environment agency. http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment115269898983/view_content. Accessed 01 Jul 2009

  • Elfstrand S, Bath B, Mårtensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36(1):70–82

    Article  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC, London, pp 77–86

    Google Scholar 

  • Ferreira E, Martin-Didonet C (2012) Mulching and cover crops effects on the soil and rhizosphere-associated bacterial communities in field experiment. J Agric Sci Tech 14(3):671–681

    CAS  Google Scholar 

  • Garbaye J (1994) Tansley review no. 76 helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128(2):197–210

    Article  Google Scholar 

  • Gong M, Tang M, Chen H et al (2012) Effects of Glomus mosseae and Rhizobium on the growth of black locust seedlings and the quality of weathered soft rock soils in the Loess Plateau, China. Ann Microbiol 62(4):1579–1586

    Article  CAS  Google Scholar 

  • Gu Y, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24(1):57–72

    Article  Google Scholar 

  • Guo R, Li X, Christie P et al (2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant Soil 313(1–2):55–70

    Article  CAS  Google Scholar 

  • Harrison JA, Matson PA, Fendorf SE (2005) Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquat Sci 67(3):308–315

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J et al (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9(5):1177–1194

    Article  Google Scholar 

  • Hartz TK (2002) Sustainable vegetable production in California: current status, future prospects. HortScience 37(7):1015–1022

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? Nature 394(6692):431

    Article  CAS  Google Scholar 

  • Henneron L, Bernard L, Hedde M et al (2015) Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron Sustain Dev 35(1):169–181

    Article  Google Scholar 

  • Higo M, Isobe K, Drijber RA et al (2014) Impact of a 5-year winter cover crop rotational system on the molecular diversity of arbuscular mycorrhizal fungi colonizing roots of subsequent soybean. Biol Fert Soils 50(6):913–926

    Article  Google Scholar 

  • Hildebrandt U, Janetta K, Bethe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ et al (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  Google Scholar 

  • Houngnandan P, Sanginga N, Woomer P et al (2000) Response of Mucuna pruriens to symbiotic nitrogen fixation by rhizobia following inoculation in farmers' fields in the derived savanna of Benin. Biol Fert Soils 30(5–6):558–565

    Article  CAS  Google Scholar 

  • Jackson LE (2000) Fates and losses of nitrogen from a nitrogen-15-labeled cover crop in an intensively managed vegetable system. Soil Sci Soc Am J 64(4):1404–1412

    Article  CAS  Google Scholar 

  • Jokela WE, Grabber JH, Karlen DL et al (2009) Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron J 101(4):727–737

    Article  Google Scholar 

  • Kabir Z, Koide RT (2002) Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant Soil 238(2):205–215

    Article  CAS  Google Scholar 

  • Karthikeyan R, Kulakow PA (2003) Soil plant microbe interactions in phytoremediation. In: Schepper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 52–74

    Google Scholar 

  • Katsvairo TW, Wright DL, Marois JJ et al (2007) Transition from conventional farming to organic farming using bahiagrass. J Sci Food Agric 87(15):2751–2756

    Article  CAS  Google Scholar 

  • Kim SY, Lee CH, Gutierrez J et al (2013) Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant Soil 366(1–2):273–286

    Article  CAS  Google Scholar 

  • Kirkpatrick WD, White PM Jr, Wolf DC et al (2008) Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil. Int J Phytoremediat 10(3):210–221

    Article  CAS  Google Scholar 

  • Kong AYY, Scow KM, Córdova-Kreylos AL et al (2011) Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol Biochem 43(1):20–30

    Article  CAS  Google Scholar 

  • Kramberger B, Gselman A, Janzekovic M et al (2009) Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. Eur J Agron 31(2):103–109

    Article  CAS  Google Scholar 

  • Kramberger B, Gselman A, Kapun S et al (2007) Effect of sowing rate of Italian ryegrass drilled into pea stubble on removal of soil mineral nitrogen and autumn nitrogen accumulation by herbage yield. Pol J Environ Stud 16(5):705

    Google Scholar 

  • Kramberger B, Lukac B, Gruskovnjak D et al (2008) Effects of Italian ryegrass and date of plow-in on soil mineral nitrogen and sugarbeet yield and quality. Agron J 100(5):1332–1338

    Article  CAS  Google Scholar 

  • Kumar V, Mills DJ, Anderson JD et al (2004) An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc Natl Acad Sci USA 101(29):10535–10540

    Article  CAS  Google Scholar 

  • Kusliene G, Rasmussen J, Kuzyakov Y et al (2014) Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15 N labelled exudates. Soil Biol Biochem 76:22–33

    Article  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29(4):437–450

    Article  CAS  Google Scholar 

  • Lehmann J, Da Silva JP, Trujillo L et al (1999) Legume cover crops and nutrient cycling in tropical fruit tree production. In II ISHS Conference on Fruit Production in the Tropics and Subtropics. Acta Hortic 531:65–72

    Google Scholar 

  • Li X, Yang J, Zhao C (2014) Effect of agro-forestry and time on soil and water conservation of sloping red soil in southeastern China. J Soil Water Conserv 69(2):131–139

    Article  Google Scholar 

  • Li Y, Ran W, Zhang R et al (2009) Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 315(1–2):285–296

    Article  CAS  Google Scholar 

  • Liang S, Grossman J, Shi W (2014) Soil microbial responses to winter legume cover crop management during organic transition. Eur J Soil Biol 65:15–22

    Article  CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78(3):366–371

    Google Scholar 

  • Long L, Zhu H, Yao Q et al (2008) Analysis of the bacterial community associated with Gigaspora margarita spores. Plant Soil 320:1–9

    Article  CAS  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernández Á et al (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125

    Article  CAS  Google Scholar 

  • Lu Y, Watkins KB, Teasdale JR et al (2000) Cover crops in sustainable food production. Food Rev Int 16:121–157

    Article  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39(1):461–490

    Article  CAS  Google Scholar 

  • Ma M, Christensen MJ, Nan Z (2015) Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur J Plant Pathol 141(3):571–583

    Article  CAS  Google Scholar 

  • Mackie KA, Schmidt HP, Müller T et al (2014) Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. Sci Total Environ 500:34–43

    Article  CAS  Google Scholar 

  • Mader P, Fliebbach A, Dubois D et al (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697

    Article  CAS  Google Scholar 

  • Maltais-Landry G, Scow K, Brennan E (2014) Soil phosphorus mobilization in the rhizosphere of cover crops has little effect on phosphorus cycling in California agricultural soils. Soil Biol Biochem 78:255–262

    Article  CAS  Google Scholar 

  • Manici LM, Caputo F, Babini V (2004) Effect of green manure on Pythium spp. population and microbial communities in intensive cropping systems. Plant Soil 263(1/2):133–142

    Article  CAS  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13(2):127–136

    Article  Google Scholar 

  • Marinari S, Mancinelli R, Brunetti P et al (2015) Soil quality, microbial functions and tomato yield under cover crop mulching in the Mediterranean environment. Soil Till Res 145:20–28

    Article  Google Scholar 

  • Maul JE, Buyer JS, Lehman RM et al (2014) Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Appl Soil Ecol 77:42–50

    Article  Google Scholar 

  • Mazzola M, Brown J (2010) Efficacy of brassicaceous seed meal formulations for the control of apple replant disease in conventional and organic production systems. Plant Dis 94(7):835–842

    Article  CAS  Google Scholar 

  • Mazzola M, Granatstein DM, Elfving DC et al (2002) Cultural management of microbial community structure to enhance growth of apple in replant soils. Phytopathology 92(12):1363–1366

    Article  Google Scholar 

  • Moreno B, Garcia-Rodriguez S, Canizares R et al (2009) Rainfed olive farming in south-eastern Spain: long-term effect of soil management on biological indicators of soil quality. Agric Ecosyst Environ 131(3):333–339

    Article  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL et al (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5(10):922–926

    Article  CAS  Google Scholar 

  • Morvan X, Naisse C, Malam Issa O et al (2014) Effect of ground cover type on surface runoff and subsequent soil erosion in Champagne vineyards in France. Soil Use Manage 30(3):372–381

    Article  Google Scholar 

  • Mothapo NV, Grossman JM, Sooksa-Nguan T et al (2013) Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fert Soils 49(7):871–879

    Article  Google Scholar 

  • Myrold DD, Zeglin LH, Jansson JK (2014) The potential of metagenomic approaches for understanding soil microbial processes. Soil Sci Soc Am J 78(1):3–10

    Article  CAS  Google Scholar 

  • Nair A, Ngouajio M (2012) Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl Soil Ecol 58:45–55

    Article  Google Scholar 

  • Nishizawa T, Komatsuzaki M, Sato Y et al (2010) Molecular characterization of fungal communities in non-tilled, cover-cropped upland rice field soils. Microbes Environ 25(3):204–210

    Article  Google Scholar 

  • Njeru EM, Avio L, Bocci G et al (2015) Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fert Soils 51(2):151–166

    Article  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M et al (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  Google Scholar 

  • Palm CA, Smukler SM, Sullivan CC et al (2010) Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proc Natl Acad Sci USA 107(46):19661–19666

    Article  CAS  Google Scholar 

  • Patkowska E, Konopiński M (2013) The role of oats, common vetch and tansy phacelia as cover plants in the formation of microorganisms communities in the soil under the cultivation of root chicory (Cichorium intybus var. sativum Bisch.) and salsify (Tragopogon porrifolius var. sativus (Gaterau) Br.). Acta Sci Pol-Hortoru 12(5):179–191

    Google Scholar 

  • Pimentel D, Hepperly P, Hanson J et al (2005) Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 55(7):573–582

    Article  Google Scholar 

  • Piva JT, Dieckow J, Bayer C et al (2012) No-till reduces global warming potential in a subtropical Ferralsol. Plant Soil 361(1–2):359–373

    Article  CAS  Google Scholar 

  • Qiao Y, Li Z, Wang X et al (2012) Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant Soil Environ 58:174–180

    Google Scholar 

  • Rahman MH, Simpson WR, Matthew C et al (2015) Response of diploid perennial ryegrass to fungal endophyte AR29 infections under water stress. Commun Soil Sci Plan 46(7):845–860

    Article  CAS  Google Scholar 

  • Ramos ME, Benítez E, García PA et al (2010) Cover crops under different managements vs. frequent tillage in almond orchards in semiarid conditions: effects on soil quality. Appl Soil Ecol 44(1):6–14

    Article  Google Scholar 

  • Ramos-Zapata JA, Marrufo-Zapata D, Guadarrama P et al (2012) Impact of weed control on arbuscular mycorrhizal fungi in a tropical agroecosystem: a long-term experiment. Mycorrhiza 22(8):653–661

    Article  Google Scholar 

  • Reardon CL, Strauss SL, Mazzola M (2013) Changes in available nitrogen and nematode abundance in response to Brassica seed meal amendment of orchard soil. Soil Biol Biochem 57:22–29

    Article  CAS  Google Scholar 

  • Reeleder RD, Miller JJ, Ball Coelho BR et al (2006) Impacts of tillage, cover crop, and nitrogen on populations of earthworms, microarthropods, and soil fungi in a cultivated fragile soil. Appl Soil Ecol 33(3):243–257

    Article  Google Scholar 

  • Rothrock CS, Kirkpatrick TL, Frans RE et al (1995) The influence of winter legume cover crops on soilborne plant pathogens and cotton seedling diseases. Plant Dis 79(2):167–171

    Article  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? In: Smith SE, Smith FA (eds) Diversity and integration in mycorrhiza. Springer, Dordrecht, pp 263–271

    Chapter  Google Scholar 

  • Sainju UM, Schomberg HH, Singh BP et al (2007) Cover crop effect on soil carbon fractions under conservation tillage cotton. Soil Till Res 96(1):205–218

    Article  Google Scholar 

  • Sainju UM, Singh BP, Whitehead WF (2002) Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil Till Res 63(3):167–179

    Article  Google Scholar 

  • Sanchez JE, Edson CE, Bird GW et al (2003) Orchard floor and nitrogen management influences soil and water quality and tart cherry yields. J Am Soc Hort Sci 128(2):277–284

    Google Scholar 

  • Sarathchandra SU, Burch G, Cox NR (1997) Growth patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) in long-term pasture. Appl Soil Ecol 6(3):293–299

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602

    Article  Google Scholar 

  • Schutter ME, Sandeno JM, Dick RP (2001) Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biol Fert Soils 34(6):397–410

    Article  CAS  Google Scholar 

  • Schutter ME, Dick RP (2002) Microbial community profiles and activities among aggregates of winter fallow and cover-cropped soil. Soil Sci Soc Am J 66(1):142–153

    Article  CAS  Google Scholar 

  • Sharma SD, Kumar P, Bhardwaj SK (2011a) Screening of AM fungi and Azotobacter chroococcum under natural, solarization, chemical sterilization and moisture conservation practices for commercial mango nursery production in north-west Himalayas. Sci Hortic 128(4):506–514

    Article  Google Scholar 

  • Sharma SD, Kumar P, Bhardwaj SK et al (2011b) Symbiotic effectiveness of arbuscular mycorrhizal technology and Azotobacterization in citrus nursery production under soil disinfestation and moisture conservation practices. Sci Hortic 132:27–36

    Article  Google Scholar 

  • Shaw LJ, Morris P, Hooker J (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880

    Article  CAS  Google Scholar 

  • Sieverding E (1990) Ecology of VAM fungi in tropical agrosystems. Agric Ecosyst Environ 29(1):369–390

    Article  Google Scholar 

  • Six J, Frey SD, Thiet RK et al (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555

    Article  CAS  Google Scholar 

  • Six J, Ogle SM, Conant RT et al (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biol 10(2):155–160

    Article  Google Scholar 

  • Six J, Paustian K, Elliott ET et al (2000) Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64(2):681–689

    Article  CAS  Google Scholar 

  • Smart RP, Calver LJ, Crowe AM et al (2007) Bracken effects on inorganic nitrogen leaching from an upland podzol. Soil Use Manage 23(3):317–322

    Article  Google Scholar 

  • Smukler SM, Jackson LE, Murphree L et al (2008) Transition to large-scale organic vegetable production in the Salinas Valley, California. Agric Ecosyst Environ 126(3–4):168–188

    Article  Google Scholar 

  • Snapp SS, Swinton SM, Labarta R et al (2005) Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron J 97(1):322–332

    Google Scholar 

  • Sofo A, Palese AM, Casacchia T et al (2010) Genetic, functional, and metabolic responses of soil microbiota in a sustainable olive orchard. Soil Sci 175(2):81–88

    Article  CAS  Google Scholar 

  • Solomon S (2007) Climate change 2007—the physical science basis: Working Group I contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Souza RF, Figueiredo CC, Madeira NR et al (2014) Effect of management systems and cover crops on organic matter dynamics of soil under vegetables. Rev Bras Ciênc Solo 38(3):923–933

    Article  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation–coupling soil zymography with 14C imaging. Soil Biol Biochem 67:106–113

    Article  CAS  Google Scholar 

  • Staver KW, Brinsfield RB (1998) Using cereal grain winter cover crops to reduce groundwater nitrate contamination in the mid-Atlantic coastal plain. J Soil Water Conserv 53(3):230–240

    Google Scholar 

  • Steenwerth K, Belina KM (2008a) Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl Soil Ecol 40(2):359–369

    Article  Google Scholar 

  • Steenwerth K, Belina KM (2008b) Cover crops and cultivation: impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Appl Soil Ecol 40(2):370–380

    Article  Google Scholar 

  • Strock JS, Porter PM, Russelle MP (2004) Cover cropping to reduce nitrate loss through subsurface drainage in the northern US Corn Belt. J Environ Qual 33(3):1010–1016

    Article  CAS  Google Scholar 

  • Sugiyama A, Yazaki K (2012) Root exudates of legume plants and their involvement in interactions with soil microbes. In: Vivanco JM, Baluska F (eds) Secretions and exudates in biological systems. Springer, Berlin, pp 27–48

    Chapter  Google Scholar 

  • Summers CF, Park S, Dunn AR et al (2014) Fungal and oomycete pathogen detection in the rhizosphere of organic tomatoes grown in cover crop-treated soils. Appl Soil Ecol 80:44–50

    Article  Google Scholar 

  • Takeda M, Nakamoto T, Miyazawa K et al (2009) Phosphorus availability and soil biological activity in an andosol under compost application and winter cover cropping. Appl Soil Ecol 42(2):86–95

    Article  Google Scholar 

  • Tang X, Bernard L, Brauman A et al (2014) Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol Biochem 75:86–93

    Article  CAS  Google Scholar 

  • Teravest D, Smith JL, Carpenter-Boggs L et al (2011) Soil carbon pools, nitrogen supply, and tree performance under several groundcovers and compost rates in a newly planted apple orchard. HortScience 46(12):1687–1694

    CAS  Google Scholar 

  • Thomazini A, Mendonça ES, Souza JL et al (2015) Impact of organic no-till vegetables systems on soil organic matter in the Atlantic Forest biome. Sci Hortic 182:145–155

    Article  Google Scholar 

  • Thorup-Kristensen K (2001) Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 230(2):185–195

    Article  CAS  Google Scholar 

  • Tian G, Kang BT, Kolawole GO et al (2005) Long-term effects of fallow systems and lengths on crop production and soil fertility maintenance in West Africa. Nutr Cycl Agroecosys 71(2):139–150

    Article  Google Scholar 

  • Tian L, Shi W (2014) Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems. Eur J Soil Biol 65:23–29

    Article  CAS  Google Scholar 

  • Tian Y, Zhang X, Liu J et al (2011b) Effects of summer cover crop and residue management on cucumber growth in intensive Chinese production systems: soil nutrients, microbial properties and nematodes. Plant Soil 339(1–2):299–315

    Article  CAS  Google Scholar 

  • Tian Y, Liu J, Wang X et al (2011a) Carbon mineralization in the soils under different cover crops and residue management in an intensive protected vegetable cultivation. Sci Hortic 127(3):198–206

    Article  Google Scholar 

  • Usuda K, Toritsuka N, Matsuo Y et al (1995) Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450 nor. Appl Environ Microbiol 61(3):883–889

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8(1):1–17

    Article  CAS  Google Scholar 

  • Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    Article  Google Scholar 

  • Van Der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 100:912–927

    Google Scholar 

  • Van Eekeren N, Van Liere D, De Vries F et al (2009) A mixture of grass and clover combines the positive effects of both plant species on selected soil biota. Appl Soil Ecol 42(3):254–263

    Article  Google Scholar 

  • Vaughan JD, Hoyt GD, Wollum AG (2000) Cover crop nitrogen availability to conventional and no-till corn: soil mineral nitrogen, corn nitrogen status, and corn yield. Commun Soil Sci Plan 31(7–8):1017–1041

    Article  CAS  Google Scholar 

  • Vera-Nunez JA, Infante-Santiago JP, Velasco VV et al (2008) Influence of P fertilization on biological nitrogen fixation in herbaceous legumes grown in acid savannah soils from the Tabasco State, Mexico. J Sustain Agric 31(3):25–42

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Weil R, Kremen A (2007) Thinking across and beyond disciplines to make cover crops pay. J Sci Food Agric 87(4):551–557

    Article  CAS  Google Scholar 

  • Wells ML (2011) Response of pecan orchard soil chemical and biological quality indicators to poultry litter application and clover cover crops. HortScience 46(2):306–310

    CAS  Google Scholar 

  • White CM, Weil RR (2010) Forage radish and cereal rye cover crop effects on mycorrhizal fungus colonization of maize roots. Plant Soil 328(1–2):507–521

    Article  CAS  Google Scholar 

  • Wortman SE, Drijber RA, Francis CA et al (2013) Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241

    Article  Google Scholar 

  • Wu C, Wood TK, Mulchandani A et al (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  Google Scholar 

  • Xavier F, Maia S, Ribeiro K et al (2013) Effect of cover plants on soil C and N dynamics in different soil management systems in dwarf cashew culture. Agric Ecosyst Environ 165:173–183

    Article  CAS  Google Scholar 

  • Yao Q, Zhu H, Hu Y et al (2008) Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominant and subordinate plants. Plant Ecol 196:261–268

    Article  Google Scholar 

  • Yao Q, Wang L, Zhu H et al (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Article  Google Scholar 

  • Zhou XG, Everts KL (2004) Suppression of Fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis 88(12):1357–1365

    Article  Google Scholar 

  • Zhou X, Chen C, Wu H et al (2012) Dynamics of soil extractable carbon and nitrogen under different cover crop residues. J Soils Sediment 12(6):844–853

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the NSFC-Guangdong Joint Project (U1131001) is greatly appreciated in that the contributors have produced the ideas presented in this chapter during the study funded by this grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhou, Y., Zhu, H., Yao, Q. (2017). Improving Soil Fertility and Soil Functioning in Cover Cropped Agroecosystems with Symbiotic Microbes. In: Singh, J., Seneviratne, G. (eds) Agro-Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-49724-2_8

Download citation

Publish with us

Policies and ethics