Skip to main content

Nutrition and Central Nervous System

  • Chapter
  • First Online:
Psychiatry and Neuroscience Update - Vol. II

Abstract

Clinical studies have revealed that depression is accompanied by impaired brain function and cognitive performances or neurodegenerative processes. Moreover, accumulation of oxidative damage has been implicated in aging and various neurological disorders. This chapter aims to integrate the current knowledge on the relation between brain and diverse alterations in nutrition. The mammalian brain is a lipid-rich organ, where lipids content in gray matter is 36–40% lipid. However, the regulation of cholesterol transport from astrocytes to neurons still remains unclear, among other things. In addition to that, micronutrient status can affect cognitive function at all ages. Vitamin deficiency could influence memory function, and might contribute to cognitive impairment and dementia.

Deficiency of vitamin A, folate, vitamins B6, B12, and minerals such as Fe and Zn are associated with prevalence of depressive symptoms according to several epidemiological studies. Experimental evidence suggests that resveratrol, vitamins A, C, E, D and folate may block oxidative stress and promote clearance of Aβ peptides. An adequate intake of fruit, nuts, vegetables, cereals, legumes, or fish can prevent the depletion. High dietary intake of saturated fat and low intake of vegetables may be associated with increased risk of Alzheimer’s disease. Supplementation of diets with omega-3 has been shown to have positive effects on cognitive function. The biochemical and molecular mechanism of these alterations of normal brain function has been described. Future studies should also examine how DNA repair deficiency occurs and affects the nervous system, because this could provide a rational basis for therapies in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9:568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simons M, Trajkovic K. Neuron–glia communication in the control of oligodendrocyte function and myelin biogenesis. J Cell Sci. 2006;119:4381–9.

    Article  CAS  PubMed  Google Scholar 

  3. Kendler KS, Gardner CO, Prescott CA. Toward a comprehensive developmental model for major depression in women. Am J Psychiatry. 2002;159:1133–45.

    Article  PubMed  Google Scholar 

  4. Morgan KD, Dazzan P, Orr KG, Hutchinson G, Chitnis X, Suckling J, Lythgoe D, Pollock SJ, Rossell S, Shapleske J, Fearon P, Morgan C, David A, McGuire PK, Jones PB, Leff J, Murray RM. Grey matter abnormalities in first-episode schizophrenia and affective psychosis. B J Psych. 2007;191:s111–6.

    Article  Google Scholar 

  5. Moore JK, Perazzo LM, Braun A. Time course of axonal myelination in the human brainstem auditory pathway. Hear Res. 1995;87:21–31.

    Article  CAS  PubMed  Google Scholar 

  6. Miller SL, Klurfeld DM, Loftus B, Kritchevsky D. Effect of essential fatty acid deficiency on myelin proteins. Lipids. 1984;19:478–80.

    Article  CAS  PubMed  Google Scholar 

  7. McKenna MC, Campagnoni AT. Effect of pre- and postnatal essential fatty acid deficiency on brain development and myelination. J Nutr. 1979;109:​1195–204.

    CAS  PubMed  Google Scholar 

  8. Silvestroff L, Franco PG, Pasquini JM. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation. ASN Neuro. 2013;5(1):e00107. doi:10.1042/AN20120075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kwik-Uribe CL, Gietzen D, German JB, Golub MS, Keen CL. Chronic marginal iron intakes during early development in mice result in persistent changes in dopamine metabolism and myelin composition. J Nutr. 2000;130:2821–30.

    CAS  PubMed  Google Scholar 

  10. Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, Chen TJ, Bai YM. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: a nationwide population-based study. BMC Psychiatry. 2013;13:161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nielsen PR, Meyer U, Mortensen PB. Individual and combined effects of maternal anemia and prenatal infection on risk for schizophrenia in offspring. Schizophr Res. 2016;172(1–3):35–40.

    Article  PubMed  Google Scholar 

  12. de Escobar GM, Obregon MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr. 2007;10:​1554–70.

    Article  PubMed  Google Scholar 

  13. Dussault JH, Ruel J. Thyroid hormones and brain development. Annu Rev Physiol. 1987;49:321–34.

    Article  CAS  PubMed  Google Scholar 

  14. Kanık-Yuksek S, Aycan Z, Oner O. Evaluation of iodine deficiency in children with attention-deficit/hyperactivity disorder. J Clin Res Pediatr Endicrinol. 2016;8(1):61–6.

    Article  Google Scholar 

  15. Sanchez ES, Bigbee JW, Fobbs W, Robinson SE, Sato-Bigbee C. Opioid addiction and pregnancy: perinatal exposure to buprenorphine affects myelination in the developing brain. Glia. 2009;56(9):1017–27.

    Article  Google Scholar 

  16. Hsu DT, Sanford BJ, Meyers KK, Love TM, Hazlett KE, Walker SJ, Mickey BJ, Koeppe RA, Langenecker SA, Zubieta JK. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Mol Psychiatry. 2015;20(2):193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aston C, Jiang L, Sokolov BP. Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res. 2004;77(6):858–66.

    Article  CAS  PubMed  Google Scholar 

  18. Barandas R, Landgraf D, McCarthy MJ, Welsh DK. Circadian clocks as modulators of metabolic comorbidity in psychiatric disorders. Curr Psychia Rep. 2015;17(12):98. doi:10.1007/s11920-015-0637-2.

    Article  Google Scholar 

  19. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain — the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magistretti PJ, Sorg O, Yu N, Martin JL, Pellerin L. Neurotransmitter regulates energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev Neurosci. 1993;15:​306–12.

    Article  CAS  PubMed  Google Scholar 

  21. Brown AM, Baltan Tekkök S, Ransom BR. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004;45:529–36.

    Article  CAS  PubMed  Google Scholar 

  22. Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medraño-Fernández I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10:1407–13.

    Article  CAS  PubMed  Google Scholar 

  23. Hertz L, Gibbs ME. What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem. 2009;109(s1):10–6.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM. Astrocyte–neuron lactate transport is required for long term memory formation. Cell. 2011;144:810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Nogales P, Almeida A, Bolaños JP. Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. JBC. 2003;278:864–74.

    Article  CAS  Google Scholar 

  26. Ben-Yoseph O, Boxer PA, Ross BD. Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res. 1996;21:1005–12.

    Article  CAS  PubMed  Google Scholar 

  27. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci. 2007;27:12255–66.

    Article  CAS  PubMed  Google Scholar 

  28. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Kireg PA, Krupenko SA, Thompson WJ, Barres BA. A transcriptome database for astrocytes, neurons and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264–78.

    Article  CAS  PubMed  Google Scholar 

  29. Banting FG, Best CH. The internal secretion of the pancreas. J Lab Clin Med. 1922;7:251–66.

    CAS  Google Scholar 

  30. Margolis RU, Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215:1375–6.

    Article  CAS  PubMed  Google Scholar 

  31. Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther. 2012;136:82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A. 1978;75:5737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dorn A, Bernstein HG, Rinne A, Ziegler M, Hahn HJ, Ansorge S. Insulin- and glucagonlike peptides in the brain. Anat Rec. 1983;207:69–77.

    Article  CAS  PubMed  Google Scholar 

  34. Duarte AI, Proenca T, Oliveira CR, Santos MS, Rego AC. Insulin restores metabolic function in cultured cortical neurons subjected to oxidative srtress. Diabetes. 2006;55:2863–70.

    Article  CAS  PubMed  Google Scholar 

  35. Bosco D, Fava A, Plastino M, Montalcini T, Pujia A. Possible implications of insulin resistance and glucose metabolism in Alzheimer s disease pathogenesis. J Cell Mol Med. 2011;17:1807–21.

    Article  CAS  Google Scholar 

  36. Tolpannen AM, Lavikainen P, Solomon A, Kivipelto M, Uusitupa M, Soininen H, Hartikainen S. History of medically treated diabetes and risk of Alzheimer disease in a nationwide case-control study. Diabetes Care. 2013;36:2015–9.

    Article  Google Scholar 

  37. Blazquez E, Velasquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophisiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer s disease. Front Endocrinol (Lausanne). 2014;5:161. doi:10.3389/fendo.2014.00161.

    Google Scholar 

  38. O’Brien JS, Sampson EL. Lipid composition of normal human brain: gray matter, white matter, and myelin. J Lipid Res. 1965;6:537–44.

    PubMed  Google Scholar 

  39. Salem Jr N, Kim H-Y, Yergey JA. Docosahexaenoic acid: membrane function and metabolism. In: Simopoulos AP, Kiter RR, Martin RE, editors. Health effects of polyunsaturated fatty acids in seafoods. New York: Academic Press; 1986. p. 263–317.

    Chapter  Google Scholar 

  40. Ikemoto A, Kobayashi T, Watanabe S, Okuyama H. Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem Res. 1997;22(6):671–8.

    Article  CAS  PubMed  Google Scholar 

  41. Bourre JM. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during aging. J Nutr Health Aging. 2004;8:163–74.

    CAS  PubMed  Google Scholar 

  42. Cook HW. In vitro formation of polyunsaturated fatty acids by desaturation in rat brain: some properties of the enzyme in developing brain and comparison with liver. J Neurochem. 1978;30:1327–34.

    Article  CAS  PubMed  Google Scholar 

  43. Purvis M, Clandinin MT, Hacker RR. Chain elongation–desaturation of linoleic acid during the development of the pig: implications for the supply of polyenoic fatty acids to the developing brain. Comp Biochem Physiol. 1983;75B:199–204.

    CAS  Google Scholar 

  44. Delaš I, Popovic M, Petrovic T, Delaš F, Ivankovic D. Changes in the fatty acid composition of brain and liver phospholipids from rats fed fat-free diet. Food Technol Biotechnol. 2008;3:278–85.

    Google Scholar 

  45. Bourre J-M, Durand G, Pascal G, Youyou A. Brain cell and tissuerecovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. J Nutr. 1989;119:15–22.

    CAS  PubMed  Google Scholar 

  46. Salem N, Moriguchi T, Greiner RS, et al. Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci. 2001;16:299–307.

    Article  CAS  PubMed  Google Scholar 

  47. Bourre JM, Francois M, Youyou A, Dumont O, Piciotti M, Pascal G. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr. 1989b;119:1880–92.

    CAS  PubMed  Google Scholar 

  48. Bourre JM, Dumont O, Pascal G, Durand G. Dietary alpha linolenic acid at 1.3 g/kg maintains maximal docosahexaenoic acid concentration in brain, heart and liver of adult rats. J Nutr. 1993;123:1313–9.

    CAS  PubMed  Google Scholar 

  49. Uauy R, Mena P, Rojas C. Essential fatty acids in early life: structural and functional role. Proc Nutr Soc. 2000;59:3–15.

    Article  CAS  PubMed  Google Scholar 

  50. Morris MC, Tangney CC. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35(suppl 2):S59–64.

    Article  CAS  PubMed  Google Scholar 

  51. Appleton KM, Rogers PJ, Ness AR. Updated systematic review and meta-analysis of the effects of n-3 long-chain polyunsaturated fatty acids on depressed mood. Am J Clin Nutr. 2010;91:​757–70.

    Article  CAS  PubMed  Google Scholar 

  52. Ferreira CF, Bernardi JR, da Silva DC, de Sa C-PN, de Souza MC, Krolow R, Weis SN, Pettenuzzo L, Kapczinski F, Silveira PP, Dalmaz O. Mitochondrial and oxidative stress aspects in hippocampus of rats submitted to dietary n-3 polyunsaturated fatty acid deficiency after exposure to early stress. Neurochem Res. 2015;40:1870–81.

    Article  CAS  PubMed  Google Scholar 

  53. Grosso G, Galvano F, Marventano S, Malaquarnera M, Bucolo C, Drago F, Caraci F. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative Med Cell Longev. 2014;2014:313570. doi:10.1155/2014/313570.

    Article  CAS  Google Scholar 

  54. Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition. 2015;31:781–6.

    Article  CAS  PubMed  Google Scholar 

  55. Perica MM, Delas I. Essential fatty acids and psychiatric disorders. Nutr Clin Pract. 2011;26:409–25.

    Article  PubMed  Google Scholar 

  56. Soderberg M, Edlund C, Kristensson K, Dallner G. Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids. 1991;26:​421–5.

    Article  CAS  PubMed  Google Scholar 

  57. Plourde M, Fortier M, Vandal M, Tremblay-Mercier J, Freemantle E, Begin M, Pifferi F, Cunnane SC. Unresolved issues in the link between docosahexaenoic acid and Alzheimer’s disease. Prostaglandins Leukot Essent Fat Acids. 2007;77:301–8.

    Article  CAS  Google Scholar 

  58. Horrocks LA, Farooqui AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fat Acids. 2004;70:361–72.

    Article  CAS  Google Scholar 

  59. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids. 2001;36:885–95.

    Article  CAS  PubMed  Google Scholar 

  60. Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res. 2005;46:949–68.

    Article  CAS  PubMed  Google Scholar 

  61. Fan YY, McMurray DN, Ly LH, Chapkin RS. Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr. 2003;133:1913–2190.

    CAS  PubMed  Google Scholar 

  62. Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, Chapkin RS. n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J Nutr Biochem. 2004;15:700–6.

    Article  CAS  PubMed  Google Scholar 

  63. Brown DA, London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000;275:17221–4.

    Article  CAS  PubMed  Google Scholar 

  64. Michel V, Bakovic M. Lipid rafts in health and disease. Biol Cell. 2007;99:129–40.

    Article  CAS  PubMed  Google Scholar 

  65. Pfrieger FW. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci. 2003;60:1158–71.

    Article  CAS  PubMed  Google Scholar 

  66. Björkhem I, Lütjohann D, Diczfalusy U, Stahle L, Ahiborg G, Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998;39:​1594–600.

    PubMed  Google Scholar 

  67. Segatto M, Di Giovanni A, Marino M, Pallottini V. Analysis of the protein network of cholesterol homeostasis in different brain regions: an age and sex dependent perspective. J Cell Physiol. 2013;228:​1561–7.

    Article  CAS  PubMed  Google Scholar 

  68. Swanson LW, Simmons DM, Hofmann SL, Goldstein JL, Brown MS. Localization of mRNA for low density lipoprotein receptor and a cholesterol synthetic enzyme in rabbit nervous system by in situ hybridization. Proc Natl Acad Sci U S A. 1988;85:9821–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science. 2001;294:1354–7.

    Article  CAS  PubMed  Google Scholar 

  70. DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG coA reductase. Cell Res. 2008;18:609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–40.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Muneton S, Sjövall J, Jovanovic JN, Griffiths WJ. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons quantitative changes to the cortical neuron proteome. J Proteome Res. 2008;7:1606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Popescu BF, Nichol H. Mapping brain metals to evaluate therapies for neuro-degenerative disease. CNS Neurosci Ther. 2011;17(4):256–68.

    Article  CAS  PubMed  Google Scholar 

  74. Frederickson CJ, Suh SW, Silva D, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutrition. 2000;130:1471S–81S.

    CAS  Google Scholar 

  75. Bertoni-Freddari C, Mocchegiani E, Malavolta M, Casoli T, Di Stefano G, Fattoretti P. Synaptic and mitochondria physiopathologic changes in the aging nervous system and the role of zinc ion homeostasis. Mech Ageing Dev. 2006;127:590–6.

    Article  CAS  PubMed  Google Scholar 

  76. Caulfield LE, Zavaleta N, Shankar AH, Merialdi M. Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. Am J Clin Nutr. 1998;68(2 Suppl):​499S–508S.

    CAS  PubMed  Google Scholar 

  77. Cunnane SC, Yang J. Zinc deficiency impairs whole-body accumulation of polyunsaturates and increases the utilization of [1-14C] linoleate for de novo lipid synthesis in pregnant rats. Can J Physiol Pharmacol. 1995;73:1246–52.

    Article  CAS  PubMed  Google Scholar 

  78. Golub M, Keen C, Gershwin M, Hendrickx A. Developmental zinc deficiency and behaviour. J Nutr. 1995;125:2263S–71S.

    CAS  PubMed  Google Scholar 

  79. Tamura T, Goldenberg RL, Ramey SL, Nelson KG, Chapman VR. Effect of zinc supplementation of pregnant women on the mental and psychomotor development of their children at 5 years of age. Am J Clin Nutr. 2003;77:1512–6.

    CAS  PubMed  Google Scholar 

  80. Perez-Rosello T, Anderson CT, Schopfer FJ, Zhao Y, Gilad D, Salvatore SR, Freeman BA, Hershfinkel M, Aizenman E, Tzounopoulos T. Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J Neurosci. 2013;33(22):​9259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bhatnagar S, Taneja S. Zinc and cognitive development. Br J Nutr. 2001;85:S139–S45.

    Article  CAS  PubMed  Google Scholar 

  82. Chou H, Chien C, Huang H, Lu K. Effects of zinc deficiency on the vallatepapillae and taste buds in rats. J Formos Med Assoc. 2001;100:326–35.

    CAS  PubMed  Google Scholar 

  83. Shah D, Sachdev HP. Zinc deficiency in pregnancy and fetal outcome. Nutr Rev. 2006;64(1):15–30.

    Article  PubMed  Google Scholar 

  84. Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E. Maternal zinc supplementation improves spatial memory in rat pups. Biol Trace Elem Res. 2012;147:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jayasooriya AP, Ackland ML, Mathai ML, Sinclair AJ, Weisinger HS, Weisinger RS, Halver JE, Kitajka K, Puskas LG. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood. Proc Natl Acad Sci U S A. 2005;102:7133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yu X, Chen W, Wei Z, Ren T, Yang X, Yu X. Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory. Food Nutr Res. 2016;60:29467. http://dx.doi.org/10.3402/fnr.v60.29467

    Article  PubMed  Google Scholar 

  87. Contestabile A, Peña-Altamira E, Virgili M, Monti B. Zinc supplementation in rats impairs hippocampal dependent memory consolidation and dampens post-traumatic recollection of stressful event. Eur Neuropsychopharmacol. 2016;26(6):1070–82. doi:10.1016/j.euroneuro.2015.12.041. pii: S0924-977X(15)00431-9

    Article  CAS  PubMed  Google Scholar 

  88. Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, Lippiello P, Boido D, Fassio A, Meldolesi J, Valtorta F, Benfenati F, Baldelli P. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013;32:2994–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  90. Jicha G, Carr S. Conceptual evolution in Alzheimer’s disease: implications for understanding the clinical phenotype of progressive neurodegenerative disease. J Alzheimers Dis. 2010;19(1):253–72.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pimplikar S, Nixon R, Robakis N, Shen J, Tsai L. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci. 2010;30:14946–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alzheimer’s Association Report. Alzheimer’s disease facts and figures Alzheimer’s Association. Alzheimers Dement. 2015;11:332–84.

    Article  Google Scholar 

  93. Daviglus M, Bell C, Berrettini W. National institutes of health state-of-the-science conference statement: preventing Alzheimer disease and cognitive decline. Ann Intern Med. 2010;153(3):176–81.

    Article  PubMed  Google Scholar 

  94. Larson E, Yaffe K, Langa K. New insights into the dementia epidemic. N Engl J Med. 2013;​369(24):2275–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Devore E, Grodstein F, van Rooij F, Hofman A, Stampfer M, Witteman J, Breteler M. Dietary antioxidants and long-term risk of dementia. Arch Neurol. 2010;67(7):819–25.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gillette-Guyonnet S, Secher M, Vellas B. Nutrition and neurodegeneration: epidemiological evidence and challenges for future research. Br J Clin Pharmacol. 2013;75(3):738–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Haan M, Miller J, Aiello A, Whitmer R, Jagust W, Mungas D, Allen L, Green R. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2007;​85(2):511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Slinin Y, Paudel M, Taylor B, Fink H, Ishani A, Canales M, Yaffe K, Barrett-Connor E, Orwoll E, Shikany J, Leblanc E, Cauley J, Ensrud K. 25-Hydroxyvitamin D levels and cognitive performance and decline in elderly men. Neurology. 2010;74(1):33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Malouf R, Grimley E. Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev. 2008;4:CD004514.

    Google Scholar 

  100. Mooijaart S, Gussqekloo J, Frolich M, Jolles J, Stott DJ, Westendorp RGJ, de Craen A. Homocysteine, vitamin B-12, and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus study. Am J Clin Nutr. 2005;82:866–71.

    CAS  PubMed  Google Scholar 

  101. Ueland P, Hustad S, Schneede J, Refsum H, Vollset S. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001;22:195–201.

    Article  CAS  PubMed  Google Scholar 

  102. Coppedè F. One-carbon metabolism and Alzheimer’s disease: focus on epigenetics. Curr Genet. 2010;11:246–60.

    Article  Google Scholar 

  103. Aisen P, Egelko S, Andrews H, Diaz-Arrastia R, Weiner M, DeCarli C, Jagust W, Miller J, Green R, Bell K, Sano M. A pilot study of vitamins to lower plasma homocysteine levels in Alzheimer disease. Am J Geriatr Psychiatry. 2003;11:246–9.

    Article  PubMed  Google Scholar 

  104. Faux N, Ellis K, Porter L, Fowler C, Laws S, Martins R, Pertile K, Rembach A, Rowe C, Rumble R, Szoeke C, Taddei K, Taddei T, Trounson B, Villemagne V, Ward V, Ames D, Masters CL, Bush AI. Homocysteine, vitamin B12, and folic acid levels in Alzheimer’s disease, mild cognitive impairment, and healthy elderly: baseline characteristics in subjects of the Australian Imaging Biomarker Lifestyle study. J Alzheimers Dis. 2011;27:909–22.

    CAS  PubMed  Google Scholar 

  105. Shea T, Lyons-Weiler J, Rogers E. Homocysteine, folate deprivation and Alzheimer neuropathology. J Alzheimers Dis. 2002;4:261–7.

    Article  CAS  PubMed  Google Scholar 

  106. Aisen P, Schneider L, Sano M, Diaz-Arrastia R, van Dyck C, Weiner M, Bottiglieri T, Jin S, Stokes K, Thomas R, Thal L. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300:​1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith A, Smith S, de Jager C, Whitbread P, Johnston C, Agacinski G, Oulhaj A, Bradley K, Jacoby R, Refsum H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 2010;5(9):e12244. doi:10.1371/journal.pone.0012244.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gubandru M, Margina D, Tsitsimpikou C, Goutzourelas N, Tsarouhas K, Ilie M, Tsatsakis A, Kouretas D. Alzheimer’s disease treated patients showed different patterns for oxidative stress and inflammation markers. Food Chem Toxicol. 2013;​61:209–14.

    Article  CAS  PubMed  Google Scholar 

  109. Mariani E, Polidori M, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci. 2005;827:65–75.

    Article  CAS  Google Scholar 

  110. Heo J, Hyon-Lee LK. The possible role of antioxidant vitamin C in Alzheimer’s disease treatment and prevention. Am J Alzheimers Dis Other Demen. 2013;28:120–5.

    Article  PubMed  Google Scholar 

  111. Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med. 2014;66:3–12.

    Article  CAS  PubMed  Google Scholar 

  113. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol Asp Med. 2007;28:423–36.

    Article  CAS  Google Scholar 

  114. Fukui K, Nakamura K, Shirai M, Hirano A, Takatsu H, Urano S. Long-term vitamin E-deficient mice exhibit cognitive dysfunction via elevation of brain oxidation. J Nutr Sci Vitaminol (Tokyo). 2015;61:​362–8.

    Article  CAS  Google Scholar 

  115. Niki E, Traber MG. A history of vitamin E. Ann Nutr Metab. 2012;61:207–12.

    Article  CAS  PubMed  Google Scholar 

  116. Dysken M, Sano M, Asthana S, Vertrees J, Pallaki M, Llorente M, Love S, Schellenberg G, McCarten J, Malphurs J, Prieto S, Chen P, Loreck D, Trapp G, Bakshi R, Mintzer J, Heidebrink J, Vidal-Cardona A, Arroyo L, Cruz A, Zachariah S, Kowall N, Chopra M, Craft S, Thielke S, Turvey C, Woodman C, Monnell K, Gordon TJ, Segal Y, Peduzzi P, Guarino P. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311:​33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mangialasche F, Xu W, Kivipelto M, Costanzi E, Ercolani S, Pigliautile M, Cecchetti R, Baglioni M, Simmons A, Soininen H, Tsolaki M, Kloszewska I, Vellas B, Lovestone S, Mecocci P, AddNeuroMed Consortium. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging. 2012;33:2282–90.

    Article  CAS  PubMed  Google Scholar 

  118. Shah R. The role of nutrition and diet in Alzheimer disease: a systematic review. J Am Med Dir Assoc. 2013;14(6):398–402.

    Article  PubMed  Google Scholar 

  119. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Alpha-tocotrienol provides the most potent neuroprotection among vitamin E analogs on cultured striatal neurons. Neuropharmacology. 2004;47:904–15.

    Article  CAS  PubMed  Google Scholar 

  120. Yonguc G, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U, Yilmaz Y, Akdogan I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene. 2015;555:119–26. doi:10.1016/j.gene.2014.10.052.

    Article  CAS  PubMed  Google Scholar 

  121. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W. Comparative effects of alpha-tocopherol and gamma-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J Neurol Sci. 2006;243:5–12.

    Article  CAS  PubMed  Google Scholar 

  122. Lane M, Bailey S. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005;75:275–93.

    Article  CAS  PubMed  Google Scholar 

  123. Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M. Retinoic acid signaling in development: tissue-specific functions and evolutionary origins. Genesis. 2008;46:640–56.

    Article  CAS  PubMed  Google Scholar 

  124. Luo T, Wagner E, Dräger U. Integrating retinoic acid signaling with brain function. Dev Psychol. 2009;45:139–50.

    Article  PubMed  Google Scholar 

  125. Malaspina A, Michael-Titus AT. Is the modulation of retinoid and retinoid-associated signaling a future therapeutic strategy in neurological trauma and neurodegeneration? J Neurochem. 2008;104:584–95.

    CAS  PubMed  Google Scholar 

  126. Cocco S, Diaz G, Stancampiano R, Diana A, Carta M, Curreli R, Sarais L, Fadda F. Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience. 2002;115:​475–82.

    Article  CAS  PubMed  Google Scholar 

  127. Hernández-Pinto A, Puebla-Jiménez L, Arilla-Ferreiro E. A vitamin A-free diet results in impairment of the rat hippocampal somatostatinergic system. Neuroscience. 2006;141:851–61.

    Article  PubMed  CAS  Google Scholar 

  128. Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, Pallet V, Jaffard R, Krezel W, Higueret P, Marighetto A. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci. 2008;28:279–91.

    Article  CAS  PubMed  Google Scholar 

  129. Misner D, Jacobs S, Shimizu Y, deUrquiza AM, Solomin L, Perlmann T, De Luca LM, Stevens C, Evans R. Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A. 2001;98:11714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kuenzli S, Tran C, Saurat J. Retinoid receptors in inflammatory responses: a potential target for pharmacology. Curr Drug Targets Inflamm Allergy. 2004;3:355–60.

    Article  CAS  PubMed  Google Scholar 

  131. Kampmann E, Johann S, van Neerven S, Beyer C, Mey J. Anti-inflammatory effect of retinoic acid on prostaglandin synthesis in cultured cortical astrocytes. J Neurochem. 2008;106:320–32.

    Article  CAS  PubMed  Google Scholar 

  132. Hashioka S, Han Y, Fujii S, Kato T, Monji A, Utsumi H, Sawada M, Nakanishi H, Kanba S. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid and interferon-induced microglial activation. Free Radic Biol Med. 2007;42:945–54.

    Article  CAS  PubMed  Google Scholar 

  133. Kao T, Ou Y, Lin S, Pan H, Song P, Raung S, Lai C, Liao S, Lu H, Chen C. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J Nutr Biochem. 2011;22:612–24.

    Article  CAS  PubMed  Google Scholar 

  134. Benveniste EN. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med. 1997;75:165–73.

    Article  CAS  PubMed  Google Scholar 

  135. Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis. 2010;37:503–9.

    Article  CAS  PubMed  Google Scholar 

  136. De Keyser J, Zeinstra E, Frohman E. Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch Neurol. 2003;60:132–6.

    Article  PubMed  Google Scholar 

  137. Dong Y, Benveniste E. Immune function of astrocytes. Glia. 2001;36:180–90.

    Article  CAS  PubMed  Google Scholar 

  138. Van Neerven S, Nemes A, Imholz P, Regen T, Denecke B, Johann S, Beyer C, Hanisch UK, Mey J. Inflammatory cytokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J Neuroimmunol. 2010;229:169–79.

    Article  CAS  PubMed  Google Scholar 

  139. Chakrabarti M, McDonald A, Will Reed J, Moss M, Das B, Ray S. Mechanisms of natural and synthetic retinoids for inhibition of pathogenesis in Alzheimer’s disease. J Alzheimers Dis. 2015;50(2):335–52.

    Article  PubMed Central  CAS  Google Scholar 

  140. Wang R, Chen S, Liu Y, Diao S, Xue Y, You X, Park E, Liao F. All-trans-retinoic acid reduces BACE1 expression under inflammatory conditions via modulation of nuclear factor κB (NFκB) signaling. J Biol Chem. 2015;290(37):22532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Patra R, Swarup D, Dwivedi S. Antioxidant effects of tocopherol, ascorbic acid and l-methionine on lead-induced oxidative stress to the liver, kidney and brain in rats. Toxicology. 2001;162:81–8.

    Article  CAS  PubMed  Google Scholar 

  142. Ramanathan K, Balakumar B, Panneerselvam C. Effects of ascorbic acid and alpha-tocopherol on arsenic-induced oxidative stress. Hum Exp Toxicol. 2002;21:675–80.

    Article  CAS  PubMed  Google Scholar 

  143. Peacock J, Folsom A, Knopman D, Mosley T, Goff Jr D, Szklo M. Dietary antioxidant intake and cognitive performance in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study investigators. Public Health Nutr. 2000;3(3):​337–43.

    Article  CAS  PubMed  Google Scholar 

  144. Yonghua L, Shumei L, Yigand M, Ning L, Yu Z. Effects of vitamins E and C combined with β-carotene on cognitive function in the elderly. Exp Ther Med. 2015;9(4):1489–93.

    Google Scholar 

  145. Masaki KH, Losonczy KG, Izmirlian G, Foley DJ, Ross GW, Petrovitch H, Havlik R, White LR. Association of vitamin E and C supplement use with cognitive function and dementia in elderly men. Neurology. 2000;54(6):1265–72.

    Article  CAS  PubMed  Google Scholar 

  146. Bowman G, Dodge H, Frei B, Calabrese C, Oken B, Kaye J, Quinn J. Ascorbic acid and rates of cognitive decline in Alzheimer’s disease. J Alzheimers Dis. 2009;16:93–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mosdol A, Erens B, Brunner E. Estimated prevalence and predictors of vitamin C deficiency within UK’s low-income population. J Public Health Dent. 2008;30:456–60.

    Article  Google Scholar 

  148. Charlton K, Rabinowitz T, Geffen L, Dhansay M. Lowered plasma vitamin C, but not vitamin E, concentrations in dementia patients. J Nutr Health Aging. 2004;8:99–107.

    CAS  PubMed  Google Scholar 

  149. Riviere S, Birlouez-Aragon I, Nourhashemi F, Vellas B. Low plasma vitamin C in alzheimer patients despite an adequate diet. Int J Geriatr Psychopharmacol. 1998;13:749–54.

    Article  CAS  Google Scholar 

  150. Murakami K, Murata N, Ozawa Y, Kinoshita N, Irie K, Shirasawa T, Shimizu T. Vitamin C restores behavioral deficits and amyloid- β oligomerization without affecting plaque formation in a mouse model of alzheimer’s disease. J Alzheimers Dis. 2011;​26:7–18.

    Article  CAS  PubMed  Google Scholar 

  151. Kennard J, Harrison F. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice. Behav Brain Res. 2014;264:34–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Engelhart M, Geerlings M, Ruitenberg A, van Swieten J, Hofman A, Witteman J, Breteler M. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287:3223–9.

    Article  CAS  PubMed  Google Scholar 

  153. Daly R, Gagnon C, Lu Z, Magliano D, Dunstan D, Sikaris K, Zimmet P, Ebeling P, Shaw J. Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin Endocrinol. 2012;77:​26–35.

    Article  Google Scholar 

  154. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 1,25-Dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyltranspeptidase and glutathione levels in rat primary astrocytes. J Neurochem. 1999;73:859–66.

    Article  CAS  PubMed  Google Scholar 

  155. Eyles D, Smith S, Kinobe R, Hewison M, McGrath J. Distribution of the vitamin D receptor and 1[alpha]-hydroxylase in human brain. J Chem Neuroanat. 2005;29:21–30.

    Article  CAS  PubMed  Google Scholar 

  156. Langub MC, Herman JP, Malluche HH, Koszewski NJ. Evidence of functional vitamin D receptors in rat hippocampus. Neuroscience. 2001;104:49–56.

    Article  CAS  PubMed  Google Scholar 

  157. Balion C, Griffith L, Strifler L, Henderson M, Patterson C, Heckman G, Llewellyn D, Raina P. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012;79:​1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Buell J, Dawson-Hughes B. Vitamin D and neurocognitive dysfunction: preventing “D” ecline? Mol Asp Med. 2008;29:415–22.

    Article  CAS  Google Scholar 

  159. Littlejohns T, Henley W, Lang I, Annweiler C, Beauchet O, Chaves P, Fried L, Kestenbaum B, Kuller L, Langa K, Lopez O, Kos K, Soni M, Llewellyn D. Vitamin D and the risk of dementia and Alzheimer disease. Neurology. 2014;83:920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Taghizadeh M, Djazayery A, Salami M, Eshraghian MR, Zavareh SA. VitaminD-free regimen intensifies the spatial learning deficit in Alzheimer’ s disease. Int J Neurol. 2011;121:16–24.

    CAS  Google Scholar 

  161. Annweiler C, Rolland Y, Schott AM, Blain H, Vellas B, Beauchet O. Serum vitamin D deficiency as a predictor of incident non-Alzheimer dementias: a 7-year longitudinal study. Dement Geriatr Cogn Disord. 2011;32:273–8.

    Article  CAS  PubMed  Google Scholar 

  162. Annweiler C, Maby E, Meyerber M, Beauchet O. Hypovitaminosis D and executive dysfunction in older adults with memory complaint: a memory clinic-based study. Dement Geriatr Cogn Disord. 2014;37:286–93.

    Article  CAS  PubMed  Google Scholar 

  163. Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T. 1alpha,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-beta peptide(1–40) from mouse brain across the blood–brain barrier. Fluids Barriers CNS. 2011;8:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Masoumi A, Goldenson B, Set G. 1α25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-β clearance by macrophages of Alzheimer’s disease patients. J Alzheimer’s Dis. 2009;17:703–17.

    Google Scholar 

  165. Kim D, Nguyen M, Dobbin M, Fischer A, Sananbenesi F, Rodgers J, Delalle I, Baur J, Sui G, Armour S, Puigserver P, Sinclair D, Tsai L. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J. 2007;26(13):3169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Venturini C, Merlo S, Souto A, Fernandes M, Gomez R, Rhoden C. Resveratrol and red wine function as antioxidants in the nervous system without cellular proliferative effects during experimental diabetes. Oxidative Med Cell Longev. 2010;3:434–41.

    Article  Google Scholar 

  167. Ye J, Liu Z, Wei J, Lu L, Huang Y, Luo L. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neurosci Lett. 2013;553:72–7.

    Article  CAS  PubMed  Google Scholar 

  168. Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca A, Vecchione C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol. 2013;61:215–26.

    Article  CAS  PubMed  Google Scholar 

  169. Wang H, Yang Y, Qian J, Zhang Q, Xu H, Li J. Resveratrol in cardiovascular disease: what is known from current research? Heart Fail. Review. 2012;17:437–48.

    CAS  Google Scholar 

  170. Liu B, Hong J. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304:1–7.

    Article  CAS  PubMed  Google Scholar 

  171. Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem. 2012;120(3):461–72.

    Article  CAS  PubMed  Google Scholar 

  172. Karuppagounder S, Pinto J, Xu H, Chen H, Beal M, Gibson G. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic mouse model of Alzheimer’s disease. Neurochem Int. 2009;28:1393–405.

    Google Scholar 

  173. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-b peptides. J Biol Chem. 2005;280:37377–82.

    Article  CAS  PubMed  Google Scholar 

  174. Ono K, Naiki H, Yamada M. The development of preventives and therapeutics for Alzheimer’s disease that inhibit the formation of beta-amyloid fibrils (fAbeta), as well as destabilize preformed fAbeta. Curr Pharm Des. 2006;12:4357–75.

    Article  CAS  PubMed  Google Scholar 

  175. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon J. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem. 2010;285:​9100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Porquet D, Casadesús G, Bayod S, Vicente A, Canudas A, Vilaplana J. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr). 2013;35:1851–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina Monica Alvarez PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alvarez, S.M., Gomez, N.N., Navigatore Fonzo, L., Sanchez, E.S., Giménez, M.S. (2017). Nutrition and Central Nervous System. In: Gargiulo, P., Mesones-Arroyo, H. (eds) Psychiatry and Neuroscience Update - Vol. II. Springer, Cham. https://doi.org/10.1007/978-3-319-53126-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53126-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53125-0

  • Online ISBN: 978-3-319-53126-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics