Skip to main content

Climate Model Confirmation: From Philosophy to Predicting Climate in the Real World

  • Chapter
  • First Online:
Climate Modelling

Abstract

Philosophical perspectives on numerical models help us to understand concepts, but will not predict the climate in the future. Studying climate model results in isolation on the other hand may seduce us to believe what we simulate will actually happen. A model is neither correct nor wrong as such; it is simply more or less useful as a representational tool for a certain purpose. I argue that process understanding is the key to make judgments about when this tool is adequate for insight relevant to certain aspects of the real world. It is only through understanding the relationships in components and variables of the climate and their representation in models, combined with understanding what our models are supposed to do, that we can make better use of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen, Myles R., Peter A. Stott, John F.B. Mitchell, Reiner Schnur, and Thomas L. Delworth. 2000. Quantifying the Uncertainty in Forecasts of Anthropogenic Climate Change. Nature 407 (6804): 617–620.

    Article  CAS  Google Scholar 

  • Annan, J.D., and J.C. Hargreaves. 2011. Understanding the CMIP3 Multimodel Ensemble. Journal of Climate 24 (16): 4529–4538.

    Google Scholar 

  • Boé, Julien, Alex Hall, and Xin Qu. 2009. September Sea-Ice Cover in the Arctic Ocean Projected to Vanish by 2100. Nature Geoscience 2 (5): 341–343.

    Article  Google Scholar 

  • Boer, G.J., M. Stowasser, and K. Hamilton. 2007. Inferring Climate Sensitivity from Volcanic Events. Climate Dynamics 28 (5): 481–502.

    Article  Google Scholar 

  • Bony, Sandrine, Robert Colman, Vladimir M. Kattsov, Richard P. Allan, Christopher S. Bretherton, Jean-Louis Dufresne, Alex Hall, et al. 2006. How Well Do We Understand and Evaluate Climate Change Feedback Processes? Journal of Climate 19 (15): 3445–3482.

    Article  Google Scholar 

  • Braconnot, Pascale, Sandy P. Harrison, Masa Kageyama, Patrick J. Bartlein, Valerie Masson-Delmotte, Ayako Abe-Ouchi, Bette Otto-Bliesner, and Yan Zhao. 2012. Evaluation of Climate Models Using Palaeoclimatic Data. Nature Climate Change 2 (6): 417–424.

    Article  Google Scholar 

  • Caldwell, Peter M., Christopher S. Bretherton, Mark D. Zelinka, Stephen A. Klein, Benjamin D. Santer, and Benjamin M. Sanderson. 2014. Statistical Significance of Climate Sensitivity Predictors Obtained by Data Mining. Geophysical Research Letters 41 (5): 1803–1808.

    Article  Google Scholar 

  • Claussen, Martin, L. Mysak, A. Weaver, Michel Crucifix, Thierry Fichefet, M.-F. Loutre, S. Weber, et al. 2002. Earth System Models of Intermediate Complexity: Closing the Gap in the Spectrum of Climate System Models. Climate Dynamics 18 (7): 579–586.

    Article  Google Scholar 

  • Collins, Matthew, Reto Knutti, Julie Arblaster, J.-L. Dufresne, Thierry Fichefet, Pierre Friedlingstein, Xuejie Gao, et al. 2013. Long-Term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029–1136. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Cox, Peter M., David Pearson, Ben B. Booth, Pierre Friedlingstein, Chris Huntingford, Chris D. Jones, and Catherine M. Luke. 2013. Sensitivity of Tropical Carbon to Climate Change Constrained by Carbon Dioxide Variability. Nature 494 (7437): 341–344.

    Article  CAS  Google Scholar 

  • Curry, Judith A., and Peter J. Webster. 2011. Climate Science and the Uncertainty Monster. Bulletin of the American Meteorological Society 92 (12): 1667–1682.

    Article  Google Scholar 

  • DelSole, Timothy, and Jagadish Shukla. 2009. Artificial Skill Due to Predictor Screening. Journal of Climate 22 (2): 331–345.

    Article  Google Scholar 

  • Deser, Clara, Reto Knutti, Susan Solomon, and Adam S. Phillips. 2012a. Communication of the Role of Natural Variability in Future North American Climate. Nature Climate Change 2 (11): 775–779.

    Article  Google Scholar 

  • Deser, Clara, Adam Phillips, Vincent Bourdette, and Haiyan Teng. 2012b. Uncertainty in Climate Change Projections: The Role of Internal Variability. Climate Dynamics 38 (3–4): 527–546.

    Article  Google Scholar 

  • Dessai, Suraje, and Mike Hulme. 2004. Does Climate Adaptation Policy Need Probabilities? Climate Policy 4 (2): 107–128.

    Article  Google Scholar 

  • Fasullo, John T., and Kevin E. Trenberth. 2012. A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity. Science 338 (6108): 792–794.

    Article  CAS  Google Scholar 

  • Fischer, E.M., and R. Knutti. 2013. Robust Projections of Combined Humidity and Temperature Extremes. Nature Climate Change 3 (2): 126–130.

    Article  Google Scholar 

  • Fischer, Erich M., Urs Beyerle, and Reto Knutti. 2013. Robust Spatially Aggregated Projections of Climate Extremes. Nature Climate Change 3 (12): 1033–1038.

    Article  Google Scholar 

  • Flato, Gregory, Jochem Marotzke, Babatunde Abiodun, Pascale Braconnot, Sin Chan Chou, William J. Collins, Peter Cox, et al. 2013. Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013 5: 741–866.

    Google Scholar 

  • Frame, D.J., D.A. Stone, P.A. Stott, and M.R. Allen. 2006. Alternatives to Stabilization Scenarios. Geophysical Research Letters 33 (14). http://onlinelibrary.wiley.com/doi/10.1029/2006GL025801/full.

  • Gleckler, P.J., T.M.L. Wigley, B.D. Santer, J.M. Gregory, K. AchutaRao, and K.E. Taylor. 2006. Volcanoes and Climate: Krakatoa’s Signature Persists in the Ocean. Nature 439 (7077): 675–675.

    Article  CAS  Google Scholar 

  • Gleckler, P.J., K.E. Taylor, and C. Doutriaux. 2008. Performance Metrics for Climate Models. Journal of Geophysical Research: Atmospheres 113 (D6): D06104. https://doi.org/10.1029/2007JD008972.

    Article  Google Scholar 

  • Gleckler, P.J., K.E. Taylor, and C. Doutriaux. 2008. Performance Metrics for Climate Models. Journal of Geophysical Research 113: 1–20. https://doi.org/10.1029/2007JD008972.

    Article  Google Scholar 

  • Hall, Alex, and Xin Qu. 2006. Using the Current Seasonal Cycle to Constrain Snow Albedo Feedback in Future Climate Change. Geophysical Research Letters 33 (3). http://onlinelibrary.wiley.com/doi/10.1029/2005GL025127/full.

  • Hargreaves, J.C., and J.D. Annan. 2009. On the Importance of Paleoclimate Modelling for Improving Predictions of Future Climate Change. Climate of the Past 5 (4): 803–814.

    Article  Google Scholar 

  • Hawkins, Ed, and Rowan Sutton. 2009. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society 90 (8): 1095–1107.

    Article  Google Scholar 

  • ———. 2011. The Potential to Narrow Uncertainty in Projections of Regional Precipitation Change. Climate Dynamics 37 (1–2): 407–418.

    Article  Google Scholar 

  • Held, Isaac M. 2005. The Gap Between Simulation and Understanding in Climate Modeling. Bulletin of the American Meteorological Society 86 (11): 1609–1614.

    Article  Google Scholar 

  • Held, Isaac. 2014. Simplicity Amid Complexity. Science 343 (6176): 1206–1207. https://doi.org/10.1126/science.1248447.

    Article  CAS  Google Scholar 

  • Huber, Markus, and Reto Knutti. 2012. Anthropogenic and Natural Warming Inferred from Changes in Earth’s Energy Balance. Nature Geoscience 5 (1): 31–36.

    Article  CAS  Google Scholar 

  • Huber, Markus, Irina Mahlstein, Martin Wild, John Fasullo, and Reto Knutti. 2011. Constraints on Climate Sensitivity from Radiation Patterns in Climate Models. Journal of Climate 24 (4): 1034–1052.

    Article  Google Scholar 

  • Jun, Mikyoung, Reto Knutti, and Douglas W. Nychka. 2008. Local Eigenvalue Analysis of CMIP3 Climate Model Errors. Tellus A 60 (5): 992–1000.

    Article  Google Scholar 

  • Kiehl, Jeffrey T. 2007. Twentieth Century Climate Model Response and Climate Sensitivity. Geophysical Research Letters 34 (22). http://onlinelibrary.wiley.com/doi/10.1029/2007GL031383/full.

  • Knutti, Reto. 2008a. Should We Believe Model Predictions of Future Climate Change? Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 366 (1885): 4647–4664.

    Article  Google Scholar 

  • ———. 2008b. Why Are Climate Models Reproducing the Observed Global Surface Warming So Well? Geophysical Research Letters 35 (18). http://onlinelibrary.wiley.com/doi/10.1029/2008GL034932/full.

  • ———. 2010. The End of Model Democracy? Climatic Change 102 (3–4): 395–404.

    Article  Google Scholar 

  • Knutti, Reto, and Gabriele C. Hegerl. 2008. The Equilibrium Sensitivity of the Earth’s Temperature to Radiation Changes. Nature Geoscience 1 (11): 735–743.

    Article  CAS  Google Scholar 

  • Knutti, Reto, and Jan Sedláček. 2013. Robustness and Uncertainties in the New CMIP5 Climate Model Projections. Nature Climate Change 3 (4): 369–373.

    Article  Google Scholar 

  • Knutti, Reto, Thomas F. Stocker, and Daniel G. Wright. 2000. The Effects of Subgrid-Scale Parameterizations in a Zonally Averaged Ocean Model. Journal of Physical Oceanography 30 (11): 2738–2752.

    Article  Google Scholar 

  • Knutti, Reto, Thomas F. Stocker, Fortunat Joos, and Gian-Kasper Plattner. 2002. Constraints on Radiative Forcing and Future Climate Change from Observations and Climate Model Ensembles. Nature 416 (6882): 719–723.

    Article  CAS  Google Scholar 

  • Knutti, Reto, Gerald A. Meehl, Myles R. Allen, and David A. Stainforth. 2006. Constraining Climate Sensitivity from the Seasonal Cycle in Surface Temperature. Journal of Climate 19 (17): 4224–4233.

    Article  Google Scholar 

  • Knutti, Reto, Gabriel Abramowitz, Matthew Collins, Veronika Eyring, Peter J. Gleckler, Bruce Hewitson, and Linda Mearns. 2010a. Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. In Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections, ed. Thomas Stocker, Qin Dahe, G.K. Plattner, M. Tignor, and P.M. Midgley. Bern: IPCC Working Group I Technical Support Unit, University of Bern, Switzerland.

    Google Scholar 

  • Knutti, Reto, Reinhard Furrer, Claudia Tebaldi, Jan Cermak, and Gerald A. Meehl. 2010b. Challenges in Combining Projections from Multiple Climate Models. Journal of Climate 23 (10): 2739–2758.

    Google Scholar 

  • Knutti, Reto, David Masson, and Andrew Gettelman. 2013. Climate Model Genealogy: Generation CMIP5 and How We Got There. Geophysical Research Letters 40 (6): 1194–1199.

    Article  Google Scholar 

  • Lahsen, Myanna. 2005. Seductive Simulations? Uncertainty Distribution Around Climate Models. Social Studies of Science 35 (6): 895–922.

    Article  Google Scholar 

  • Lean, Judith L. 2010. Cycles and Trends in Solar Irradiance and Climate. Wiley Interdisciplinary Reviews: Climate Change 1 (1): 111–122.

    Google Scholar 

  • Lean, Judith, Juerg Beer, and Raymond S. Bradley. 1995. Reconstruction of Solar Irradiance Since 1610: Implications for Climate Change. Geophysical Research Letters 22 (23): 3195–3198.

    Article  Google Scholar 

  • Lempert, Robert. 2013. Scenarios That Illuminate Vulnerabilities and Robust Responses. Climatic Change 117 (4): 627–646.

    Article  Google Scholar 

  • Lenhard, Johannes, and Eric Winsberg. 2010. Holism and Entrenchment in Climate Model Validation. Studies in History and Philosophy of Modern Physics 41: 253–262.

    Article  Google Scholar 

  • Lloyd, Elisabeth A. 2009. Varieties of Support and Confirmation of Climate Models. Aristotelian Society Supplementary Volume 83: 213–232. https://doi:10.1111/j.1467-8349.2009.00179.x

    Google Scholar 

  • ———. 2010. Confirmation and Robustness of Climate Models. Philosophy of Science: 971–984.

    Google Scholar 

  • Lopez, Ana, Claudia Tebaldi, Mark New, Dave Stainforth, Myles Allen, and Jamie Kettleborough. 2006. Two Approaches to Quantifying Uncertainty in Global Temperature Changes. Journal of Climate 19 (19): 4785–4796.

    Article  Google Scholar 

  • Mahlstein, I., R. Knutti, S. Solomon, and R.W. Portmann. 2011. Early Onset of Significant Local Warming in Low Latitude Countries. Environmental Research Letters 6: 34009. https://doi.org/10.1088/1748-9326/6/3/034009.

    Article  Google Scholar 

  • Mahlstein, Irina, Robert W. Portmann, John S. Daniel, Susan Solomon, and Reto Knutti. 2012. Perceptible Changes in Regional Precipitation in a Future Climate. Geophysical Research Letters 39: 1–5. https://doi.org/10.1029/2011GL050738.

  • Masson, D., and R. Knutti. 2011a. Climate Model Genealogy. Geophysical Research Letters 38: L08703. https://doi.org/10.1029/2011GL046864.

    Article  Google Scholar 

  • Masson, David, and Reto Knutti. 2011b. Spatial-Scale Dependence of Climate Model Performance in the CMIP3 Ensemble. Journal of Climate 24: 2680–2692. https://doi.org/10.1175/2011JCLI3513.1.

    Article  Google Scholar 

  • ———. 2013. Predictor Screening, Calibration, and Observational Constraints in Climate Model Ensembles: An Illustration Using Climate Sensitivity. Journal of Climate 26: 887–898. https://doi.org/10.1175/JCLI-D-11-00540.1.

    Article  Google Scholar 

  • Mauritsen, Thorsten, Bjorn Stevens, Erich Roeckner, Traute Crueger, Monika Esch, Marco Giorgetta, Helmuth Haak, et al. 2012. Tuning the Climate of a Global Model. Journal of Advances in Modeling Earth Systems 4. https://doi.org/10.1029/2012MS000154.

  • McFarlane, Norman. 2011. Parameterizations: Representing Key Processes in Climate Models Without Resolving Them. Wiley Interdisciplinary Reviews: Climate Change 2: 482–497. https://doi.org/10.1002/wcc.122.

    Google Scholar 

  • Mearns, Linda O. 2010. The Drama of Uncertainty. Climatic Change 100 (1): 77–85.

    Article  Google Scholar 

  • Meinshausen, Malte, Nicolai Meinshausen, William Hare, Sarah C.B. Raper, Katja Frieler, Reto Knutti, David J. Frame, and Myles R. Allen. 2009. Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 °C. Nature 458 (7242): 1158–1162.

    Article  CAS  Google Scholar 

  • Moss, Richard H., Jae A. Edmonds, Kathy A. Hibbard, Martin R. Manning, Steven K. Rose, Detlef P. Van Vuuren, Timothy R. Carter, et al. 2010. The Next Generation of Scenarios for Climate Change Research and Assessment. Nature 463 (7282): 747–756.

    Article  CAS  Google Scholar 

  • Mueller, Peter. 2010. Constructing Climate Knowledge with Computer Models. Wiley Interdisciplinary Reviews: Climate Change 1 (4): 565–580.

    Google Scholar 

  • Oreskes, Naomi, Kristin Shrader-Frechette, Kenneth Belitz, and others. 1994. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science 263 (5147): 641–646.

    Article  CAS  Google Scholar 

  • Parker, Wendy S. 2006. Understanding Pluralism in Climate Modeling. Foundations of Science 11 (4): 349–368.

    Article  Google Scholar 

  • ———. 2009a. Does Matter Really Matter? Computer Simulations, Experiments, and Materiality. Synthese 169 (3): 483–496.

    Article  Google Scholar 

  • ———. 2009b. II—Confirmation and Adequacy-for-Purpose in Climate Modelling. Aristotelian Society Supplementary Volume 83: 233–249. https://doi:10.1111/j.1467-8349.2009.00180.x

    Google Scholar 

  • ———. 2011. When Climate Models Agree: The Significance of Robust Model Predictions. Philosophy of Science 78 (4): 579–600.

    Article  Google Scholar 

  • ———. 2013. Ensemble Modeling, Uncertainty and Robust Predictions. Wiley Interdisciplinary Reviews: Climate Change 4 (3): 213–223.

    Google Scholar 

  • Pennell, Christopher, and Thomas Reichler. 2011. On the Effective Number of Climate Models. Journal of Climate 24 (9): 2358–2367.

    Article  Google Scholar 

  • Pirtle, Zachary, Ryan Meyer, and Andrew Hamilton. 2010. What Does It Mean When Climate Models Agree? A Case for Assessing Independence Among General Circulation Models. Environmental Science & Policy 13 (5): 351–361.

    Article  Google Scholar 

  • Reichler, Thomas, and Junsu Kim. 2008. How Well do Coupled Models Simulate Today’s Climate? Bulletin of the American Meteorological Society 89 (3): 303–311.

    Article  Google Scholar 

  • Rogelj, Joeri, Malte Meinshausen, and Reto Knutti. 2012. Global Warming Under Old and New Scenarios Using IPCC Climate Sensitivity Range Estimates. Nature Climate Change 2 (4): 248–253.

    Article  Google Scholar 

  • Rowlands, Daniel J., David J. Frame, Duncan Ackerley, Tolu Aina, Ben B.B. Booth, Carl Christensen, Matthew Collins, et al. 2012. Broad Range of 2050 Warming from an Observationally Constrained Large Climate Model Ensemble. Nature Geoscience 5 (4): 256–260.

    Article  CAS  Google Scholar 

  • Sanderson, Benjamin M. 2013. On the Estimation of Systematical Error in Regression-Based Predictions of Climate Sensitivity. Climatic Change 118 (3–4): 757–770.

    Article  Google Scholar 

  • Sanderson, Benjamin M., and Reto Knutti. 2012. On the Interpretation of Constrained Climate Model Ensembles. Geophysical Research Letters 39 (16). http://onlinelibrary.wiley.com/doi/10.1029/2012GL052665/full.

  • Schaller, N., I. Mahlstein, J. Cermak, and R. Knutti. 2011. Analyzing Precipitation Projections: A Comparison of Different Approaches to Climate Model Evaluation. Journal of Geophysical Research: Atmospheres 116 (D10). https://doi.org/10.1029/2010JD014963/full.

  • Sedláček, Jan, and Reto Knutti. 2014. Half of the World’s Population Experience Robust Changes in the Water Cycle for a 2 °C Warmer World. Environmental Research Letters 9 (4): 44008.

    Article  Google Scholar 

  • Sherwood, Steven C., Sandrine Bony, and Jean-Louis Dufresne. 2014. Spread in Model Climate Sensitivity Traced to Atmospheric Convective Mixing. Nature 505 (7481): 37–42.

    Article  Google Scholar 

  • Smith, Leonard A. 2002. What Might We Learn from Climate Forecasts? Proceedings of the National Academy of Sciences 99 (suppl 1): 2487–2492.

    Article  Google Scholar 

  • Smith, Richard L., Claudia Tebaldi, Doug Nychka, and Linda O. Mearns. 2009. Bayesian Modeling of Uncertainty in Ensembles of Climate Models. Journal of the American Statistical Association 104 (485): 97–116.

    Article  CAS  Google Scholar 

  • Soden, Brian J., Richard T. Wetherald, Georgiy L. Stenchikov, and Alan Robock. 2002. Global Cooling after the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. Science 296 (5568): 727–730.

    Article  CAS  Google Scholar 

  • Solomon, Susan, Gian-Kasper Plattner, Reto Knutti, and Pierre Friedlingstein. 2009. Irreversible Climate Change Due to Carbon Dioxide Emissions. Proceedings of the National Academy of Sciences 106: 1704–1709. https://doi:10.1073/pnas.0812721106.

    Google Scholar 

  • Stevens, Bjorn, and Sandrine Bony. 2013. What Are Climate Models Missing? Science 340 (6136): 1053–1054.

    Article  CAS  Google Scholar 

  • Stott, Peter A., and James A. Kettleborough. 2002. Origins and Estimates of Uncertainty in Predictions of Twenty-First Century Temperature Rise. Nature 416 (6882): 723–726.

    Article  CAS  Google Scholar 

  • Stott, Peter A., S.F.B. Tett, G.S. Jones, M.R. Allen, J.F.B. Mitchell, and G.J. Jenkins. 2000. External Control of 20th Century Temperature by Natural and Anthropogenic Forcings. Science 290 (5499): 2133–2137.

    Article  CAS  Google Scholar 

  • Stott, Peter, Peter Good, Gareth Jones, Nathan Gillett, and Ed Hawkins. 2013. The Upper End of Climate Model Temperature Projections Is Inconsistent with Past Warming. Environmental Research Letters 8 (1): 14024.

    Article  Google Scholar 

  • Stroeve, Julienne, Marika M. Holland, Walt Meier, Ted Scambos, and Mark Serreze. 2007. Arctic Sea Ice Decline: Faster than Forecast. Geophysical Research Letters 34 (9). http://onlinelibrary.wiley.com/doi/10.1029/2007GL029703/full.

  • Stroeve, Julienne C., Vladimir Kattsov, Andrew Barrett, Mark Serreze, Tatiana Pavlova, Marika Holland, and Walter N. Meier. 2012. Trends in Arctic Sea Ice Extent from CMIP5, CMIP3 and Observations. Geophysical Research Letters 39 (16). http://onlinelibrary.wiley.com/doi/10.1029/2012GL052676/full.

  • Taylor, Karl E., Ronald J. Stouffer, and Gerald A. Meehl. 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93 (4): 485–498.

    Article  Google Scholar 

  • Tebaldi, Claudia, and Reto Knutti. 2007. The Use of the Multi-Model Ensemble in Probabilistic Climate Projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 365 (1857): 2053–2075.

    Article  Google Scholar 

  • Tebaldi, Claudia, Linda O. Mearns, Doug Nychka, and Richard L. Smith. 2004. Regional Probabilities of Precipitation Change: A Bayesian Analysis of Multimodel Simulations. Geophysical Research Letters 31 (24). http://onlinelibrary.wiley.com/doi/10.1029/2004GL021276/full.

  • Tebaldi, Claudia, Richard L. Smith, Doug Nychka, and Linda O. Mearns. 2005. Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles. Journal of Climate 18 (10): 1524–1540.

    Article  Google Scholar 

  • Tebaldi, Claudia, Julie M. Arblaster, and Reto Knutti. 2011. Mapping Model Agreement on Future Climate Projections. Geophysical Research Letters 38 (23). http://onlinelibrary.wiley.com/doi/10.1029/2011GL049863/full.

  • Trenberth, Kevin E., and Aiguo Dai. 2007. Effects of Mount Pinatubo Volcanic Eruption on the Hydrological Cycle as an Analog of Geoengineering. Geophysical Research Letters 34 (15). http://onlinelibrary.wiley.com/doi/10.1029/2007GL030524/full.

  • Van Oldenborgh, Geert Jan, S.Y. Philip, and Matthew Collins. 2005. El Niño in a Changing Climate: A Multi-Model Study. Ocean Science 1 (2): 81–95.

    Article  Google Scholar 

  • Weigel, Andreas P., Reto Knutti, Mark A. Liniger, and Christof Appenzeller. 2010. Risks of Model Weighting in Multimodel Climate Projections. Journal of Climate 23 (15): 4175–4191.

    Article  Google Scholar 

  • Weisberg, Michael. 2006. Robustness Analysis. Philosophy of Science 73 (5): 730–742.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Christoph Baumberger, Gertrude Hirsch Hadorn, Lisa Lloyd, Maria Rugenstein, Wendy Parker, and Eric Winsberg for constructive comments and discussions, which have helped to clarify my thinking and have greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knutti, R. (2018). Climate Model Confirmation: From Philosophy to Predicting Climate in the Real World. In: A. Lloyd, E., Winsberg, E. (eds) Climate Modelling. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-65058-6_11

Download citation

Publish with us

Policies and ethics