Skip to main content

G-Protein-Coupled Receptors: Membrane Diffusion and Organization Matter

  • Chapter
  • First Online:
Membrane Organization and Dynamics

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 20))

Abstract

G-protein coupled receptors constitute an important family of membrane proteins. They are involved in numerous signaling pathways. The efficiency and regulation of these signaling events depend on the organization of the receptors with their different partners in the plasma membrane, and the way this organization influences the encounters between them. By studying the dynamics of the receptors and their partners in the plasma membrane, important information can be obtained on this membrane organization. In this chapter, we will first review experimental techniques used to study receptor dynamics. Then we discuss how the membrane environment influences receptor dynamics, and how measurements of this dynamics can inform us on interactions of the receptors with their signaling partners and on the effect of ligands. We finish by discussing recent theoretical advances on models of receptor organization, in particular the cluster phases, which provide a coherent framework for the understanding of this organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jacobson K, Sheets ED, Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995;268:1441–2.

    Article  CAS  PubMed  Google Scholar 

  2. Neubig RR. Membrane organization in G-protein mechanisms. FASEB J. 1994;8:939–46.

    CAS  PubMed  Google Scholar 

  3. Kobilka B. The structural basis of G-protein-coupled receptor signaling (Nobel lecture). Angew Chem Int Ed. 2013;52:6380–8.

    Article  CAS  Google Scholar 

  4. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM. Molecular signatures of G-protein-coupled receptors. Nature. 2013;494:185–94.

    Article  CAS  PubMed  Google Scholar 

  5. Jacobson KA. New paradigms in GPCR drug discovery. Biochem Pharmacol. 2015;98:541–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Violin JD, Crombie AL, Soergel DG, Lark MW. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci. 2014;35:308–16.

    Article  CAS  PubMed  Google Scholar 

  7. Mondal S, Khelashvili G, Johner N, Weinstein H. How the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment. Adv Exp Med Biol. 2014;796:55–74.

    Article  CAS  PubMed  Google Scholar 

  8. Baker A, Sauliere A, Dumas F, Millot C, Mazeres S, Lopez A, Salome L. Functional membrane diffusion of G-protein coupled receptors. Eur Biophys J. 2007;36:849–60.

    Article  CAS  PubMed  Google Scholar 

  9. Barden AO, Goler AS, Humphreys SC, Tabatabaei S, Lochner M, Ruepp M-D, Jack T, Simonin J, Thompson AJ, Jones JP, Brozik JA. Tracking individual membrane proteins and their biochemistry: the power of direct observation. Neuropharmacology. 2015;98:22–30.

    Article  CAS  PubMed  Google Scholar 

  10. Truong Quang B-A, Lenne P-F. Membrane microdomains: from seeing to understanding. Front Plant Sci. 2014;5:18.

    Google Scholar 

  11. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol. 2002;157:1071–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sevcsik E, Schutz GJ. With or without rafts? Alternative views on cell membranes. Bioessays. 2016;38(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  13. Destainville N, Schmidt TH, Lang T. Where biology meets physics-a converging view on membrane microdomain dynamics. Curr Top Membr. 2016;77:27–65.

    Article  PubMed  Google Scholar 

  14. Meilhac N, Destainville N. Clusters of proteins in biomembranes: insights into the roles of interaction potential shapes and of protein diversity. J Phys Chem B. 2011;115:7190–9.

    Article  CAS  PubMed  Google Scholar 

  15. Sprague BL, Mcnally JG. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 2005;15:84–91.

    Article  CAS  PubMed  Google Scholar 

  16. Salome L, Cazeils JL, Lopez A, Tocanne JF. Characterization of membrane domains by FRAP experiments at variable observation areas. Eur Biophys J. 1998;27:391–402.

    Article  CAS  PubMed  Google Scholar 

  17. Haustein E, Schwille P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct. 2007;36:151–69.

    Article  CAS  PubMed  Google Scholar 

  18. Ries J, Schwille P. Fluorescence correlation spectroscopy. Bioessays. 2012;34(5):361–8.

    Article  PubMed  Google Scholar 

  19. Wawrezinieck L, Rigneault H, Marguet D, Lenne PF. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J. 2005;89(6):4029–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wenger J, Conchonaud F, Dintinger J, Wawrezinieck L, Ebbesen TW, Rigneault H, Marguet D, Lenne PF. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization. Biophys J. 2007;92(3):913–9.

    Article  CAS  PubMed  Google Scholar 

  21. Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–99.

    Article  CAS  PubMed  Google Scholar 

  22. Wieser S, Schutz GJ. Tracking single molecules in the live cell plasma membrane-do’s and don’t’s. Methods. 2008;46(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  23. Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK. Tracking single molecules at work in living cells. Nat Chem Biol. 2014;10(7):524–32.

    Article  CAS  PubMed  Google Scholar 

  24. Manzo C, Garcia-Parajo MF. A review of progress in single particle tracking: from methods to biophysical insights. Rep Prog Phys. 2015;78(12):124601.

    Article  PubMed  CAS  Google Scholar 

  25. Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods. 2014;11(3):267–79.

    Article  CAS  PubMed  Google Scholar 

  26. Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods. 2014;11(3):253–66.

    Article  CAS  PubMed  Google Scholar 

  27. Serge A, Bertaux N, Rigneault H, Marguet D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods. 2008;5(8):687–94.

    Article  CAS  PubMed  Google Scholar 

  28. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G. Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods. 2008;5(8):695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE, Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E. Objective comparison of particle tracking methods. Nat Methods. 2014;11(3):281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meilhac N, Le Guyader L, Salome L, Destainville N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;73(1 Pt 1):011915.

    Article  CAS  PubMed  Google Scholar 

  31. Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, Henry JP. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J. 2006;91(9):3542–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bouzigues C, Dahan M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys J. 2007;92(2):654–60.

    Article  CAS  PubMed  Google Scholar 

  33. Michalet X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys. 2010;82(4 Pt 1):041914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. El Beheiry M, Dahan M, MASSON JB. Inference MAP: mapping of single-molecule dynamics with Bayesian inference. Nat Methods. 2015;12:594–5.

    Article  CAS  PubMed  Google Scholar 

  35. Masson JB, CASANOVA D, Turkcan S, Voisinne G, Popoff MR, Vergassola M, Alexandrou A. Inferring maps of forces inside cell membrane microdomains. Phys Rev Lett. 2009;102:048103.

    Article  PubMed  CAS  Google Scholar 

  36. Adler J, Shevchuk AI, Novak P, Korchev YE, Parmryd I. Plasma membrane topography and interpretation of single-particle tracks. Nat Methods. 2010;7:170–1.

    Article  CAS  PubMed  Google Scholar 

  37. Dupont A, Lamb DC. Nanoscale three-dimensional single particle tracking. Nanoscale. 2011;3:4532–41.

    Article  CAS  PubMed  Google Scholar 

  38. Wells NP, Lessard GA, Goodwin PM, Phipps ME, Cutler PJ, Lidke DS, Wilson BS, Werner JH. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett. 2010;10:4732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006;312:217–24.

    Article  CAS  PubMed  Google Scholar 

  40. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev. 2010;90:1103–63.

    Article  CAS  PubMed  Google Scholar 

  41. Shaner NC, Patterson GH, Davidson MW. Advances in fluorescent protein technology. J Cell Sci. 2007;120:4247–60.

    Article  CAS  PubMed  Google Scholar 

  42. Pinaud F, Clarke S, Sittner A, Dahan M. Probing cellular events, one quantum dot at a time. Nat Methods. 2010;7:275–85.

    Article  CAS  PubMed  Google Scholar 

  43. Haanappel E, Mascalchi P, Carayon K, Mazères S, Salomé L. Probing the influence of the particle in Single Particle Tracking measurements of lipid diffusion. Soft Matter. 2012;8:4462–70.

    Article  CAS  Google Scholar 

  44. Geerts H, De Brabander M, Nuydens R, Geuens S, Moeremans M, De Mey J, Hollenbeck P. Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys J. 1987;52:775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spillane KM, Ortega-Arroyo J, De Wit G, Eggeling C, Ewers H, Wallace MI, Kukura P. High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 2014;14:5390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu HM, Lin YH, Yen TC, Hsieh CL. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci Rep. 2016;6:20542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clausen MP, Lagerholm BC. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking. Nano Lett. 2013;13:2332–7.

    Article  CAS  PubMed  Google Scholar 

  48. Albrecht D, Winterflood CM, Ewers H. Dual color single particle tracking via nanobodies. Methods Appl Fluoresc. 2015;3(2):024001.

    Article  PubMed  CAS  Google Scholar 

  49. Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochim Biophys Acta. 2014;1838:15–33.

    Article  CAS  PubMed  Google Scholar 

  50. Stoddart LA, Kilpatrick LE, Briddon SJ, Hill SJ. Probing the pharmacology of G protein-coupled receptors with fluorescent ligands. Neuropharmacology. 2015;98:48–57.

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi T, Hamachi I. Traceless affinity labeling of endogenous proteins for functional analysis in living cells. Acc Chem Res. 2012;45:1460–9.

    Article  CAS  PubMed  Google Scholar 

  52. Burger K, Gimpl G, Fahrenholz F. Regulation of receptor function by cholesterol. Cell Mol Life Sci. 2000;57:1577–92.

    Article  CAS  PubMed  Google Scholar 

  53. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    Article  CAS  PubMed  Google Scholar 

  54. Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A. Two classes of cholesterol binding sites for the beta2AR revealed by thermostability and NMR. Biophys J. 2014;107:2305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pucadyil TJ, Chattopadhyay A. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. Biochim Biophys Acta. 2007;1768:655–68.

    Article  CAS  PubMed  Google Scholar 

  56. Ganguly S, Chattopadhyay A. Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: a zFCS study. Biophys J. 2010;99:1397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ganguly S, Paila YD, Chattopadhyay A. Metabolic depletion of sphingolipids enhances the mobility of the human serotonin1A receptor. Biochem Biophys Res Commun. 2011;411:180–4.

    Article  CAS  PubMed  Google Scholar 

  58. Vukojevic V, Ming Y, D'addario C, Rigler R, Johansson B, Terenius L. Ethanol/naltrexone interactions at the mu-opioid receptor CLSM/FCS study in live cells. PLoS One. 2008;3:e4008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ayee MA, Levitan I. Paradoxical impact of cholesterol on lipid packing and cell stiffness. Front Biosci. 2016;21:1245–59.

    Article  Google Scholar 

  60. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci USA. 2003;100:13964–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jans DA, Peters R, Jans P, Fahrenholz F. Ammonium chloride affects receptor number and lateral mobility of the vasopressin V2-type receptor in the plasma membrane of LLC-PK1 renal epithelial cells: role of the cytoskeleton. Exp Cell Res. 1990;191:121–8.

    Article  CAS  PubMed  Google Scholar 

  62. Roess DA, Jewell MA, Philpott CJ, Barisas BG. The rotational diffusion of LH receptors differs when receptors are occupied by hCG versus LH and is increased by cytochalasin D. Biochim Biophys Acta. 1997;1357:98–106.

    Article  CAS  PubMed  Google Scholar 

  63. Wheeler D, Sneddon WB, Wang B, Friedman PA, Romero G. NHERF-1 and the cytoskeleton regulate the traffic and membrane dynamics of G protein-coupled receptors. J Biol Chem. 2007;282:25076–87.

    Article  CAS  PubMed  Google Scholar 

  64. Valentine CD, Haggie PM. Confinement of beta(1)- and beta(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell. 2011;22:2970–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huet S, Karatekin E, Tran VS, Fanget I, Cribier S, Henry JP. Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics. Biophys J. 2006;91:3542–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. De Keijzer S, Galloway J, Harms GS, Devreotes PN, Iglesias PA. Disrupting microtubule network immobilizes amoeboid chemotactic receptor in the plasma membrane. Biochim Biophys Acta Biomembr. 2011;1808:1701–8.

    Article  CAS  Google Scholar 

  67. Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J. 2005;88:3659–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meilhac N, Le Guyader L, Salome L, Destainville N. Detection of confinement and jumps in single-molecule membrane trajectories. Phys Rev E: Stat Nonlinear Soft Matter Phys. 2006;73:011915.

    Article  CAS  Google Scholar 

  69. Daumas F, Destainville N, Millot C, Lopez A, Dean D, Salome L. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys J. 2003;84:356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Destainville N. Cluster phases of membrane proteins. Phys Rev E: Stat Nonlinear Soft Matter Phys. 2008;77:011905.

    Article  CAS  Google Scholar 

  71. Destainville N. An alternative scenario for the formation of specialized protein nano-domains (cluster phases) in biomembranes. EPL. 2010;91:58001.

    Google Scholar 

  72. Bouvier M, Hebert TE. CrossTalk proposal: weighing the evidence for Class A GPCR dimers, the evidence favours dimers. J Physiol Lond. 2014;592:2439–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bouvier M, Hebert TE. Rebuttal from Michel Bouvier and Terence E Hebert. J Physiol Lond. 2014;592:2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lambert NA, Javitch JA. CrossTalk opposing view: weighing the evidence for classA GPCR dimers, the jury is still out. J Physiol Lond. 2014;592:2443–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lambert NA, Javitch JA. Rebuttal from Nevin A. Lambert and Jonathan A Javitch. J Physiol Lond. 2014;592:2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Saffman PG, Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci USA. 1975;72(8):3111–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M. Analysis of receptor oligomerization by FRAP microscopy. Nat Methods. 2009;6:225–30.

    Article  CAS  PubMed  Google Scholar 

  78. Fonseca JM, Lambert NA. Instability of a class A G protein-coupled receptor oligomer interface. Mol Pharmacol. 2009;75:1296–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zurn A, Lohse MJ. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA. 2013;110:743–8.

    Article  CAS  PubMed  Google Scholar 

  80. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA. 2010;107:2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A. Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192:463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kusumi A, Suzuki KG, Kasai RS, Ritchie K, Fujiwara TK. Hierarchical mesoscale domain organization of the plasma membrane. Trends Biochem Sci. 2011;36:604–15.

    Article  CAS  PubMed  Google Scholar 

  83. Scarselli M, Annibale P, Mccormick PJ, Kolachalam S, Aringhieri S, Radenovic A, Corsini GU, Maggio R. Revealing G-protein-coupled receptor oligomerization at the single-molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS J. 2016;283:1197–217.

    Article  CAS  PubMed  Google Scholar 

  84. Kaczor AA, Makarska-Bialokoz M, Selent J, De La Fuente RA, Marti-Solano M, Castro M. Application of BRET for studying G protein-coupled receptors. Mini Rev Med Chem. 2014;14:411–25.

    Article  CAS  PubMed  Google Scholar 

  85. Herrick-Davis K, Grinde E, Lindsley T, Teitler M, Mancia F, Cowan A, Mazurkiewicz JE. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells. Mol Pharmacol. 2015;87:660–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mystek P, Tworzydlo M, Dziedzicka-Wasylewska M, Polit A. New insights into the model of dopamine D1 receptor and G-proteins interactions. Biochim Biophys Acta. 2015;1853:594–603.

    Article  CAS  PubMed  Google Scholar 

  87. Perez JB, Segura JM, Abankwa D, Piguet J, Martinez KL, Vogel H. Monitoring the diffusion of single heterotrimeric G proteins in supported cell-membrane sheets reveals their partitioning into microdomains. J Mol Biol. 2006;363:918–30.

    Article  CAS  PubMed  Google Scholar 

  88. Pucadyil TJ, Kalipatnapu S, Harikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A. G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry. 2004;43:15852–62.

    Article  CAS  PubMed  Google Scholar 

  89. Qin K, Sethi PR, Lambert NA. Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J. 2008;22:2920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H. Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry. 2004;43:6190–9.

    Article  CAS  PubMed  Google Scholar 

  91. Cezanne L, Lecat S, Lagane B, Millot C, Vollmer JY, Matthes H, Galzi JL, Lopez A. Dynamic confinement of NK2 receptors in the plasma membrane. Improved FRAP analysis and biological relevance. J Biol Chem. 2004;279:45057–67.

    Article  CAS  PubMed  Google Scholar 

  92. Jacquier V, Prummer M, Segura JM, Pick H, Vogel H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc Natl Acad Sci USA. 2006;103:14325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lill Y, Martinez KL, Lill MA, Meyer BH, Vogel H, Hecht B. Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging. Chemphyschem. 2005;6:1633–40.

    Article  CAS  PubMed  Google Scholar 

  94. Sauliere-Nzeh Ndong A, Millot C, Corbani M, Mazeres S, Lopez A, Salome L. Agonist-selective dynamic compartmentalization of human Mu opioid receptor as revealed by resolutive FRAP analysis. J Biol Chem. 2010;285:14514–20.

    Article  PubMed  CAS  Google Scholar 

  95. Smith SM, Lei Y, Liu J, Cahill ME, Hagen GM, Barisas BG, Roess DA. Luteinizing hormone receptors translocate to plasma membrane microdomains after binding of human chorionic gonadotropin. Endocrinology. 2006;147:1789–95.

    Article  CAS  PubMed  Google Scholar 

  96. Thurner P, Gsandtner I, Kudlacek O, Choquet D, Nanoff C, Freissmuth M, Zezula J. A two-state model for the diffusion of the A2A adenosine receptor in hippocampal neurons: agonist-induced switch to slow mobility is modified by synapse-associated protein 102 (SAP102). J Biol Chem. 2014;289:9263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Veya L, Piguet J, Vogel H. Single molecule imaging deciphers the relation between mobility and signaling of a prototypical G protein-coupled receptor in living cells. J Biol Chem. 2015;290:27723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wolf-Ringwall AL, Winter PW, Liu J, Van Orden AK, Roess DA, Barisas BG. Restricted lateral diffusion of luteinizing hormone receptors in membrane microdomains. J Biol Chem. 2011;286:29818–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ahlbeck K. Opioids: a two-faced Janus. Curr Med Res Opin. 2011;27:439–48.

    Article  PubMed  Google Scholar 

  100. Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol. 2008;153(Suppl 1):S379–88.

    CAS  PubMed  Google Scholar 

  101. Hall D. Analysis and interpretation of two-dimensional single-particle tracking microscopy measurements: effect of local surface roughness. Anal Biochem. 2008;377:24–32.

    Article  CAS  PubMed  Google Scholar 

  102. Bellot M, Galandrin S, Boularan C, Matthies HJ, Despas F, Denis C, Javitch J, Mazeres S, Sanni SJ, Pons V, Seguelas MH, Hansen JL, Pathak A, Galli A, Senard JM, Gales C. Dual agonist occupancy of AT1-R-alpha2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol. 2015;11:271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parmentier M. GPCRs: heterodimer-specific signaling. Nat Chem Biol. 2015;11:244–5.

    Article  CAS  PubMed  Google Scholar 

  104. Carayon K, Mouledous L, Combedazou A, Mazeres S, Haanappel E, Salome L, Mollereau C. Heterologous regulation of Mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem. 2014;289:28697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vilardaga J-P, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ. Conformational cross-talk between [alpha]2A-adrenergic and [mu]-opioid receptors controls cell signaling. Nat Chem Biol. 2008;4:126–31.

    Article  CAS  PubMed  Google Scholar 

  106. Briddon SJ, Gandia J, Amaral OB, Ferre S, Lluis C, Franco R, Hill SJ, Ciruela F. Plasma membrane diffusion of G protein-coupled receptor oligomers. Biochim Biophys Acta. 2008;1783:2262–8.

    Article  CAS  PubMed  Google Scholar 

  107. Alves ID, Salamon Z, Hruby VJ, Tollin G. Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. Biochemistry. 2005;44:9168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Danelon C, Terrettaz S, Guenat O, Koudelka M, Vogel H. Probing the function of ionotropic and G protein-coupled receptors in surface-confined membranes. Methods. 2008;46:104–15.

    Article  CAS  PubMed  Google Scholar 

  109. Wedeking T, Löchte S, Birkholz O, Wallenstein A, Trahe J, Klingauf J, Piehler J, You C. Spatiotemporally controlled reorganization of signaling complexes in the plasma membrane of living cells. Small. 2015;11:5912–8.

    Article  CAS  PubMed  Google Scholar 

  110. Rues R-B, Dötsch V, Bernhard F. Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim Biophys Acta Biomembr. 2016;1858:1306–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Salomé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haanappel, E., Salomé, L. (2017). G-Protein-Coupled Receptors: Membrane Diffusion and Organization Matter. In: Chattopadhyay, A. (eds) Membrane Organization and Dynamics . Springer Series in Biophysics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-66601-3_11

Download citation

Publish with us

Policies and ethics