Skip to main content

Antioxidants in Physical Exercise and Sports Performance

  • Chapter
  • First Online:
Nutritional Antioxidant Therapies: Treatments and Perspectives

Abstract

Skeletal muscle contraction generates reactive oxygen species (ROS), which are signaling molecules involved in exercise and force generation. Although ROS levels are maintained at physiological levels by endogenous antioxidants, exercise can alter the oxidant-antioxidant balance in contracting muscles. Regular exercise strengthens the antioxidant defense system via ROS-mediated adaptive responses, while strenuous exercise induces ROS accumulation and oxidative stress. Excess ROS level damages intracellular components and impairs muscle function, potentially limiting physical performance. The manipulation of antioxidant status can restore redox homeostasis and reduce exercise-induced oxidative damages. However, the effectiveness of antioxidant supplementation is unclear due to the complicated and multifaceted roles of ROS in both exercise-induced oxidative injuries and adaptation. The intensity, duration, and types of exercise are also likely to contribute to the effect of ROS in exercise. This chapter provides an updated discussion on ROS and antioxidants in aerobic and anaerobic exercises as well as their multifaceted effects on oxidative balance and physical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akil M, Bicer M, Menevse E, Baltaci AK, Mogulkoc R. Selenium supplementation prevents lipid peroxidation caused by arduous exercise in rat brain tissue. Bratisl Lek Listy. 2011;112:314–7.

    CAS  PubMed  Google Scholar 

  • Akita Y, Otani H, Matsuhisa S, Kyoi S, Enoki C, Hattori R, Imamura H, et al. Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS. Am J Physiol Heart Circ Physiol. 2007;292:H2051–9.

    Article  CAS  PubMed  Google Scholar 

  • Alessio HM, Hagerman AE, Fulkerson BK, Ambrose J, Rice RE, Wiley RL. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med Sci Sports Exerc. 2000;32:1576–81.

    Article  CAS  PubMed  Google Scholar 

  • Baker JS, McCormick MC, Robergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:905612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barja G. Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res. 2007;10:215–24.

    Article  CAS  PubMed  Google Scholar 

  • Belviranlı M, Gökbel H. Acute exercise induced oxidative stress and antioxidant changes. Eur J Gen Med. 2006;3:126–31.

    Article  Google Scholar 

  • Bloomer RJ, Goldfarb AH. Anaerobic exercise and oxidative stress: a review. Can J Appl Physiol. 2004;29:245–63.

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RJ, Goldfarb AH, McKenzie MJ. Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Med Sci Sports Exerc. 2006;38:1098–105.

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RJ, Fisher-Wellman KH, Bell HK. The effect of long-term, high-volume aerobic exercise training on postprandial lipemia and oxidative stress. Phys Sportsmed. 2010;38:64–71.

    Article  PubMed  Google Scholar 

  • Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Front Physiol. 2012;3:142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brady PS, Brady LJ, Ullrey DE. Selenium, vitamin E and the response to swimming stress in the rat. J Nutr. 1979;109:1103–9.

    Article  CAS  PubMed  Google Scholar 

  • Chae CH, Shin CH, Kim HT. The combination of alpha-lipoic acid supplementation and aerobic exercise inhibits lipid peroxidation in rat skeletal muscles. Nutr Res. 2008;28:399–405.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborthy A, Ramani P, Sherlin HJ, Premkumar P, Natesan A. Antioxidant and pro-oxidant activity of vitamin C in oral environment. Indian J Dent Res. 2014;25:499–504.

    Article  PubMed  Google Scholar 

  • Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol (1985). 2007;102:2379–88.

    Article  CAS  Google Scholar 

  • Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000;72:637S–46S.

    Article  CAS  PubMed  Google Scholar 

  • Close GL, Ashton T, McArdle A, Jackson MJ. Microdialysis studies of extracellular reactive oxygen species in skeletal muscle: factors influencing the reduction of cytochrome c and hydroxylation of salicylate. Free Radic Biol Med. 2005;39:1460–7.

    Article  CAS  PubMed  Google Scholar 

  • Connolly DA, Lauzon C, Agnew J, Dunn M, Reed B. The effects of vitamin C supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fitness. 2006;46:462–7.

    CAS  PubMed  Google Scholar 

  • CoÅŸkun S, Gönül B, Güzel NA, Balabanlí B. The effects of vitamin C supplementation on oxidative stress and antioxidant content in the brains of chronically exercised rats. Mol Cell Biochem. 2005;280:135–8.

    Article  PubMed  CAS  Google Scholar 

  • Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–8.

    Article  CAS  PubMed  Google Scholar 

  • Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29:1127–32.

    Article  CAS  PubMed  Google Scholar 

  • Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL. Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol Respir Environ Exerc Physiol. 1978;45:927–32.

    CAS  PubMed  Google Scholar 

  • Draeger CL, Naves A, Marques N, Baptistella AB, Carnauba RA, Paschoal V, Nicastro H. Controversies of antioxidant vitamins supplementation in exercise: ergogenic or ergolytic effects in humans? J Int Soc Sports Nutr. 2014;11:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa A, Leiva A, Peña M, Müller M, Debandi A, Hidalgo C, Carrasco MA, et al. Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol. 2006;209:379–88.

    Article  CAS  PubMed  Google Scholar 

  • Finaud J, Lac G, Filaire E. Oxidative stress: relationship with exercise and training. Sports Med. 2006;36:327–58.

    Article  PubMed  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gökbel H, Gül I, Belviranl M, Okudan N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J Strength Cond Res. 2010;24:97–102.

    Article  PubMed  Google Scholar 

  • Gomes EC, Silva AN, de Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Med Cell Longev. 2012;2012:756132.

    Article  CAS  Google Scholar 

  • Gómez-Cabrera MC, Pallardó FV, Sastre J, Viña J, García-del-Moral L. Allopurinol and markers of muscle damage among participants in the Tour de France. JAMA. 2003;289:2503–4.

    Article  PubMed  Google Scholar 

  • Gómez-Cabrera MC, Borrás C, Pallardó FV, Sastre J, Ji LL, Viña J. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol. 2005;567:113–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008a;87:142–9.

    Article  PubMed  Google Scholar 

  • Gómez-Cabrera MC, Domenech E, Viña J. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med. 2008b;44:126–31.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando B, Viña J. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training. Free Radic Biol Med. 2015;86:37–46.

    Article  PubMed  CAS  Google Scholar 

  • Groussard C, Rannou-Bekono F, Machefer G, Chevanne M, Vincent S, Sergent O, Cillard J, et al. Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol. 2003;89:14–20.

    Article  CAS  PubMed  Google Scholar 

  • He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486.

    PubMed  PubMed Central  Google Scholar 

  • Hirai DM, Copp SW, Schwagerl PJ, Musch TI, Poole DC. Acute effects of hydrogen peroxide on skeletal muscle microvascular oxygenation from rest to contractions. J Appl Physiol (1985). 2011;110:1290–8.

    Article  CAS  Google Scholar 

  • Ihara H, Shino Y, Morita Y, Kawaguchi E, Hashizume N, Yoshida M. Is skeletal muscle damaged by the oxidative stress following anaerobic exercise? J Clin Lab Anal. 2001;15:239–43.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MJ, Khassaf M, Vasilaki A, McArdle F, McArdle A. Vitamin E and the oxidative stress of exercise. Ann N Y Acad Sci. 2004;1031:158–68.

    Article  CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Viña J. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci. 2006;1067:425–35.

    Article  CAS  PubMed  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Viña J. Role of nuclear factor kappaB and mitogen-activated protein kinase signaling in exercise-induced antioxidant enzyme adaptation. Appl Physiol Nutr Metab. 2007;32:930–5.

    Article  CAS  PubMed  Google Scholar 

  • Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95:549–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C, O’Moore KM, Dickman JR, Ji LL. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radic Biol Med. 2009;47:1394–400.

    Article  CAS  PubMed  Google Scholar 

  • Keith RE, Merrill E. The effects of vitamin C on maximum grip strength and muscular endurance. J Sports Med Phys Fitness. 1983;23:253–6.

    CAS  PubMed  Google Scholar 

  • Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2:38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinnunen S, Oksala N, Hyyppä S, Sen CK, Radak Z, Laaksonen DE, Szabó B, et al. alpha-Lipoic acid modulates thiol antioxidant defenses and attenuates exercise-induced oxidative stress in standardbred trotters. Free Radic Res. 2009;43:697–705.

    Article  CAS  PubMed  Google Scholar 

  • Kojda G, Cheng YC, Burchfield J, Harrison DG. Dysfunctional regulation of endothelial nitric oxide synthase (eNOS) expression in response to exercise in mice lacking one eNOS gene. Circulation. 2001;103:2839–44.

    Article  CAS  PubMed  Google Scholar 

  • Kosmidou I, Vassilakopoulos T, Xagorari A, Zakynthinos S, Papapetropoulos A, Roussos C. Production of interleukin-6 by skeletal myotubes: role of reactive oxygen species. Am J Respir Cell Mol Biol. 2002;26:587–93.

    Article  CAS  PubMed  Google Scholar 

  • Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev. 2007;128:267–75.

    Article  CAS  PubMed  Google Scholar 

  • Lauer N, Suvorava T, Rüther U, Jacob R, Meyer W, Harrison DG, Kojda G. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res. 2005;65:254–62.

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Goldfarb AH, Rescino MH, Hegde S, Patrick S, Apperson K. Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Med Sci Sports Exerc. 2002;34:443–8.

    Article  CAS  PubMed  Google Scholar 

  • Leonardo-Mendonça RC, Concepción-Huertas M, Guerra-Hernández E, Zabala M, Escames G, Acuña-Castroviejo D. Redox status and antioxidant response in professional cyclists during training. Eur J Sport Sci. 2014;14:830–8.

    Article  PubMed  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol (1985). 2000;89:21–8.

    Article  CAS  Google Scholar 

  • Long YC, Widegren U, Zierath JR. Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proc Nutr Soc. 2004;63:227–32.

    Article  CAS  PubMed  Google Scholar 

  • Loureiro AC, do Rêgo-Monteiro IC, Louzada RA, Ortenzi VH, de Aguiar AP, de Abreu ES, Cavalcanti-de-Albuquerque JP, et al. Differential expression of NADPH oxidases depends on skeletal muscle fiber type in rats. Oxidative Med Cell Longev. 2016;2016:6738701.

    Article  Google Scholar 

  • Marosi K, Bori Z, Hart N, Sárga L, Koltai E, Radák Z, Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience. 2012;226:21–8.

    Article  CAS  PubMed  Google Scholar 

  • Marshall RJ, Scott KC, Hill RC, Lewis DD, Sundstrom D, Jones GL, Harper J. Supplemental vitamin C appears to slow racing greyhounds. J Nutr. 2002;132:1616S–21S.

    Article  CAS  PubMed  Google Scholar 

  • Mastaloudis A, Morrow JD, Hopkins DW, Devaraj S, Traber MG. Antioxidant supplementation prevents exercise-induced lipid peroxidation, but not inflammation, in ultramarathon runners. Free Radic Biol Med. 2004;36:1329–41.

    Article  CAS  PubMed  Google Scholar 

  • Mastaloudis A, Traber MG, Carstensen K, Widrick JJ. Antioxidants did not prevent muscle damage in response to an ultramarathon run. Med Sci Sports Exerc. 2006;38:72–80.

    Article  CAS  PubMed  Google Scholar 

  • Medved I, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S, Gong X, et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol (1985). 2004a;97:1477–85.

    Article  CAS  Google Scholar 

  • Medved I, Brown MJ, Bjorksten AR, McKenna MJ. Effects of intravenous N-acetylcysteine infusion on time to fatigue and potassium regulation during prolonged cycling exercise. J Appl Physiol (1985). 2004b;96:211–7.

    Article  CAS  Google Scholar 

  • Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, Sugino T, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24:293–9.

    Article  CAS  PubMed  Google Scholar 

  • Moopanar TR, Allen DG. The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. J Physiol. 2006;571:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Corrigan F, Baune BT. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. J Mol Psychiatry. 2015;3:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise—the role of reactive oxygen species. Front Biosci. 2007;12:4826–38.

    Article  CAS  PubMed  Google Scholar 

  • Nioka S, Moser D, Lech G, Evengelisti M, Verde T, Chance B, Kuno S. Muscle deoxygenation in aerobic and anaerobic exercise. Adv Exp Med Biol. 1998;454:63–70.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Fischer CP. Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr Opin Clin Nutr Metab Care. 2007;10:265–71.

    Article  CAS  PubMed  Google Scholar 

  • Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011;41:1043–69.

    Article  PubMed  Google Scholar 

  • Polotow TG, Vardaris CV, Mihaliuc AR, Gonçalves MS, Pereira B, Ganini D, Barros MP. Astaxanthin supplementation delays physical exhaustion and prevents redox imbalances in plasma and soleus muscles of Wistar rats. Nutrients. 2014;6:5819–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88:1243–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc. 1999;31:987–97.

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Duarte J, Kavazis AN, Talbert EE. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Ji LL, Kavazis AN, Jackson MJ. Reactive oxygen species: impact on skeletal muscle. Compr Physiol. 2011;1:941–69.

    PubMed  PubMed Central  Google Scholar 

  • Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol. 2016;594:5081–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol (1985). 2004;97:1119–28.

    Article  Google Scholar 

  • Qiao D, Hou L, Liu X. Influence of intermittent anaerobic exercise on mouse physical endurance and antioxidant components. Br J Sports Med. 2006;40:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radák Z, Asano K, Kizaki T, Oh-ishi S, Inoue M, Ohno H. Acute bout of exercise does not alter the antioxidant enzyme status and lipid peroxidation of rat hippocampus and cerebellum. Pathophysiology. 1995;2:243–5.

    Article  Google Scholar 

  • Radák Z, Pucsok J, Mecseki S, Csont T, Ferdinandy P. Muscle soreness-induced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free Radic Biol Med. 1999;26:1059–63.

    Article  PubMed  Google Scholar 

  • Radak Z, Chung HY, Goto S. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology. 2005;6:71–5.

    Article  CAS  PubMed  Google Scholar 

  • Radák Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44:153–9.

    Article  PubMed  CAS  Google Scholar 

  • Reid MB. Redox interventions to increase exercise performance. J Physiol. 2016;594:5125–33.

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, Stumvoll M, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106:8665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168:686–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rush JW, Turk JR, Laughlin MH. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol. 2003;284:H1378–87.

    Article  CAS  PubMed  Google Scholar 

  • Savory LA, Kerr CJ, Whiting P, Finer N, McEneny J, Ashton T. Selenium supplementation and exercise: effect on oxidant stress in overweight adults. Obesity (Silver Spring). 2012;20:794–801.

    Article  CAS  Google Scholar 

  • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.

    Article  CAS  PubMed  Google Scholar 

  • Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr. 2000;72:653S–69S.

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Wang X, Yamanaka T, Ogita F, Nakatani K, Takeuchi T. Effects of anaerobic exercise and aerobic exercise on biomarkers of oxidative stress. Environ Health Prev Med. 2007;12:202–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Schnass I, Pabst H. Influence of vitamin E on physical performance. Int J Vitam Nutr Res. 1988;58:49–54.

    CAS  PubMed  Google Scholar 

  • Slattery KM, Dascombe B, Wallace LK, Bentley DJ, Coutts AJ. Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc. 2014;46:1114–23.

    Article  CAS  PubMed  Google Scholar 

  • Stagos D, Goutzourelas N, Ntontou AM, Kafantaris I, Deli CK, Poulios A, Jamurtas AZ, et al. Assessment of eccentric exercise-induced oxidative stress using oxidation-reduction potential markers. Oxidative Med Cell Longev. 2015;2015:204615.

    Article  Google Scholar 

  • Staton WM. The influence of ascorbic acid in minimizing post-exercise muscle soreness in young men. Res Q. 1952;23:356–60.

    Google Scholar 

  • Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015;5:356–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg J, Gainnier M, Michel F, Faucher M, Arnaud C, Jammes Y. The post-exercise oxidative stress is depressed by acetylsalicylic acid. Respir Physiol Neurobiol. 2002;130:189–99.

    Article  CAS  PubMed  Google Scholar 

  • Stepanyan V, Crowe M, Haleagrahara N, Bowden B. Effects of vitamin E supplementation on exercise-induced oxidative stress: a meta-analysis. Appl Physiol Nutr Metab. 2014;39:1029–37.

    Article  CAS  PubMed  Google Scholar 

  • Tellis CM, Rosen C, Thekdi A, Sciote JJ. Anatomy and fiber type composition of human interarytenoid muscle. Ann Otol Rhinol Laryngol. 2004;113:97–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urso ML, Clarkson PM. Oxidative stress, exercise, and antioxidant supplementation. Toxicology. 2003;189:41–54.

    Article  CAS  PubMed  Google Scholar 

  • Vincent HK, Powers SK, Stewart DJ, Demirel HA, Shanely RA, Naito H. Short-term exercise training improves diaphragm antioxidant capacity and endurance. Eur J Appl Physiol. 2000;81:67–74.

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol. 2004;2:e294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang HJ, Pan YX, Wang WZ, Zucker IH, Wang W. NADPH oxidase-derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex. J Appl Physiol (1985). 2009;107:450–9.

    Article  CAS  Google Scholar 

  • Wang P, Li CG, Qi Z, Cui D, Ding S. Acute exercise induced mitochondrial H(2)O(2) production in mouse skeletal muscle: association with P(66shc) and Foxo3a signaling and antioxidant enzymes. Oxidative Med Cell Longev. 2015;2015:536456.

    Google Scholar 

  • Whitehead NP, Yeung EW, Allen DG. Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol. 2006;33:657–62.

    Article  CAS  PubMed  Google Scholar 

  • Woods JA, Wilund KR, Martin SA, Kistler BM. Exercise, inflammation and aging. Aging Dis. 2012;3:130–40.

    PubMed  Google Scholar 

  • Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin. 2006;27:821–6.

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Hidalgo FJ, Tappel AL. Comparative antioxidant effectiveness of dietary beta-carotene, vitamin E, selenium and coenzyme Q10 in rat erythrocytes and plasma. J Nutr. 1991;121:50–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zhang Y, Davie A, Marshall-Gradisnik S, Hu H, Wang J, Brushett D. Muscle and plasma coenzyme Q10 concentration, aerobic power and exercise economy of healthy men in response to four weeks of supplementation. J Sports Med Phys Fitness. 2005;45:337–46.

    CAS  PubMed  Google Scholar 

  • Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2:e348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo L, Christofi FL, Wright VP, Liu CY, Merola AJ, Berliner LJ, Clanton TL. Intra- and extracellular measurement of reactive oxygen species produced during heat stress in diaphragm muscle. Am J Physiol Cell Physiol. 2000;279:C1058–66.

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Christofi FL, Wright VP, Bao S, Clanton TL. Lipoxygenase-dependent superoxide release in skeletal muscle. J Appl Physiol (1985). 2004;97:661–8.

    Article  CAS  Google Scholar 

  • Zuo L, Roberts WJ, Tolomello RC, Goins AT. Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling. Front Biol. 2013;8:305–11.

    Article  CAS  Google Scholar 

  • Zuo L, Hallman AH, Roberts WJ, Wagner PD, Hogan MC. Superoxide release from contracting skeletal muscle in pulmonary TNF-α overexpression mice. Am J Physiol Regul Integr Comp Physiol. 2014;306:R75–81.

    Article  CAS  PubMed  Google Scholar 

  • Zuo L, Best TM, Roberts WJ, Diaz PT, Wagner PD. Characterization of reactive oxygen species in diaphragm. Acta Physiol (Oxf). 2015a;213:700–10.

    Article  CAS  Google Scholar 

  • Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiol (Oxf). 2015b;214:329–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank David C. Sypert, Davis E. Garrison, Eswar Kandaswamy, Evan R. Prather, and Zewen Liu for their assistance during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zuo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zuo, L., Zhou, T., Chuang, CC. (2017). Antioxidants in Physical Exercise and Sports Performance. In: Al-Gubory, K., Laher, I. (eds) Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer, Cham. https://doi.org/10.1007/978-3-319-67625-8_10

Download citation

Publish with us

Policies and ethics