Skip to main content

Combining Thesaurus Knowledge and Probabilistic Topic Models

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10716))

Abstract

In this paper we present the approach of introducing thesaurus knowledge into probabilistic topic models. The main idea of the approach is based on the assumption that the frequencies of semantically related words and phrases, which are met in the same texts, should be enhanced: this action leads to their larger contribution into topics found in these texts. We have conducted experiments with several thesauri and found that for improving topic models, it is useful to utilize domain-specific knowledge. If a general thesaurus, such as WordNet, is used, the thesaurus-based improvement of topic models can be achieved with excluding hyponymy relations in combined topic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wordnet.princeton.edu/.

  2. 2.

    http://eurovoc.europa.eu/drupal/.

  3. 3.

    http://www.labinform.ru/pub/ruthes/index_eng.htm.

  4. 4.

    https://golosislama.com/.

  5. 5.

    https://github.com/shen139/openwebspider/releases.

References

  1. Blei, D.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  2. Smith, A., Lee, T.Y., Poursabzi-Sangdeh, F., Boyd-Graber, J., Elmqvist, N., Findlater, L.: Evaluating visual representations for topic understanding and their effects on manually generated labels. Trans. Assoc. Comput. Linguist. 5, 1–15 (2017)

    Google Scholar 

  3. Chang, J., Boyd-Graber, J., Wang, Ch., Gerrich S., Blei, D.: Reading tea leaves: how humans interpret topic models. In: Proceedings of the 24th Annual Conference on Neural Information Processing Systems, pp. 288–296 (2009)

    Google Scholar 

  4. Boyd-Graber, J., Mimno, D., Newman, D.: Care and feeding of topic models: problems, diagnostics, and improvements. In: Handbooks of Modern Statistical Methods. CRC Press, Boca Raton (2014)

    Google Scholar 

  5. Blei, D., Lafferty, J.: Visualizing topics with multi-word expressions (2009). https://arxiv.org/pdf/0907.1013.pdf

  6. Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via dirichlet forest priors. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32 (2011)

    Google Scholar 

  7. Newman, D., Bonilla, E., Buntine, W.: Improving topic coherence with regularized topic models. In: Advances in Neural Information Processing Systems, pp. 496–504 (2011)

    Google Scholar 

  8. Xie, P., Yang D., Xing, E.: Incorporating word correlation knowledge into topic modeling. In: Proceedings of NAACL-2015, pp. 725–734 (2015)

    Google Scholar 

  9. Chen, Z., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Discovering coherent topics using general knowledge. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 209–218. ACM (2013)

    Google Scholar 

  10. Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of EMNLP 2011, pp. 262–272 (2011)

    Google Scholar 

  11. Gao, Y., Wen, D.: Semantic similarity-enhanced topic models for document analysis. In: Chang, M., Li, Y. (eds.) Smart Learning Environments. LNET, pp. 45–56. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44447-4_3

    Google Scholar 

  12. Wallach, H.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 977–984 (2006)

    Google Scholar 

  13. Griffiths, T., Steyvers, M., Tenenbaum, J.: Topics in semantic representation. Psychol. Rev. 114(2), 211–244 (2007)

    Article  Google Scholar 

  14. Wang, X., McCallum, A., Wei, X.: Topical n-grams: phrase and topic discovery, with an application to information retrieval. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, pp. 697–702 (2007)

    Google Scholar 

  15. Lau, J., Baldwin, T., Newman, D.: On collocations and topic models. ACM Trans. Speech Lang. Process. 10(3), 1–14 (2013)

    Article  Google Scholar 

  16. Nokel, M., Loukachevitch, N.: A method of accounting bigrams in topic models. In: Proceedings of the 11th Workshop on Multiword Expressions (2015)

    Google Scholar 

  17. Nokel, M., Loukachevitch, N.: Accounting ngrams and multi-word terms can improve topic models. In: Proceedings of the 11th Workshop on Multiword Expressions (2016)

    Google Scholar 

  18. Loukachevitch, N., Dobrov B.: RuThes linguistic ontology vs. Russian wordnets. In: Proceedings of Global WordNet Conference (GWC-2014) (2014)

    Google Scholar 

  19. Lau, J., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: Proceedings of the European Chapter of the Association for Computational Linguistics (2014)

    Google Scholar 

  20. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: Proceedings of the Biennial GSCL Conference, Potsdam, Germany, pp. 31–40 (2009)

    Google Scholar 

  21. Frantzi, K., Ananiadou, S.: The c-value/nc-value domain-independent method for multi-word term extraction. J. Natural Lang. Process. 6(3), 145–179 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by Russian Scientific Foundation in part concerning the combined approach uniting thesaurus information and probabilistic topic models (project N16-18-02074). The study on application of the approach to content analysis of Islam sites is supported by Russian Foundation for Basic Research (project N 16-29-09606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Loukachevitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loukachevitch, N., Nokel, M., Ivanov, K. (2018). Combining Thesaurus Knowledge and Probabilistic Topic Models. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73013-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73012-7

  • Online ISBN: 978-3-319-73013-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics