Skip to main content

Role of Central Blood Pressure and Arterial Stiffening

  • Chapter
Hypertension and Heart Failure

Abstract

Two concepts have gained a growing audience these last years: the pressure amplification between central and peripheral arteries in response to arterial stiffening and pressure wave reflection and the left ventricle (LV)-arterial system coupling in heart failure (notably with preserved ejection fraction also referred to as diastolic heart failure) as arterial stiffening can result in impaired active ventricular relaxation and passive ventricular compliance. The aims of this chapter are (1) to detail the haemodynamic characteristics of the arterial circulation in order to explain why it is important to measure arterial stiffness and central BP in hypertensive patients, (2) to describe the various non-invasive methods currently available to measure arterial stiffness and central BP and (3) to discuss how arterial stiffness and central BP measurements can help understanding the relationship between hypertension and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briet M, Boutouyrie P, Laurent S, London G. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012;82:388–400.

    Article  Google Scholar 

  2. Nichols WW, O’Rourke MF, Vlachopoulos C. Cardiac failure: clinical implications. In: Arnold H, editor. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 6th ed. London: CRC Press; 2011. p. 344–56.

    Google Scholar 

  3. Laurent S, Boutouyrie P. The structural factor in hypertension: large and small artery alterations. Circ Res. 2015;116:1007–21.

    Article  CAS  Google Scholar 

  4. Westerhof BE, Guelen I, Westerhof N, Karemaker JM, Avolio A. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle. Hypertension. 2006;48:595–601.

    Article  CAS  Google Scholar 

  5. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological aspects and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  Google Scholar 

  6. Herbert A, Cruickshank K, Laurent S, Boutouyrie P, on behalf of The Reference Values for Arterial Measurements Collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk-factors. Eur Heart J. 2014;35:3122–33.

    Article  CAS  Google Scholar 

  7. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    Article  CAS  Google Scholar 

  8. Westerhof N, Sipkema P, van den Bos CG, Elzinga G. Forward and backward waves in the arterial system. Cardiovasc Res. 1972;6:648–56.

    Article  CAS  Google Scholar 

  9. Laurent S, Boutouyrie P. What is the best method to evaluate central blood pressure? Dialog Cardiovasc Med. 2015;20(3):3–14.

    Google Scholar 

  10. Laurent S, Marais L, Boutouyrie P. The non-invasive assessment of vascular aging. Can J Cardiol. 2016;32:669–79.

    Article  Google Scholar 

  11. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FU, Protogerou AD, Schillaci G, Segers P, Vermeersch S, Weber T, on behalf of the Artery Society, the European Society of Hypertension Working Group on Vascular Structure and Function and the European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    Article  Google Scholar 

  12. Reference values for carotid-femoral pulse wave velocity in the reference values for arterial stiffness’ collaboration database. Eur Heart J. 2010;31:2338–50.

    Google Scholar 

  13. Boutouyrie P, Laurent S, Girerd X, Benetos A, Lacolley P, Abergel E, Safar M. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension. 1995;25(4 Pt 1):651–9.

    Article  CAS  Google Scholar 

  14. Giannattasio C, Achilli F, Failla M, Capra A, Vincenzi A, Valagussa F, Mancia G. Radial, carotid and aortic distensibility in congestive heart failure: effects of high-dose angiotensin-converting enzyme inhibitor or low-dose association with angiotensin type 1 receptor blockade. J Am Coll Cardiol. 2002;39:1275–82.

    Article  CAS  Google Scholar 

  15. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, Eber B. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:184–9.

    Article  Google Scholar 

  16. Hoffman J, Buckberg GD. The myocardial supply: demand ratio—a critical review. Am J Cardiol. 1978;41:327–32.

    Article  CAS  Google Scholar 

  17. Safar ME. Pulse pressure in essential hypertension: clinical and therapeutical implications. J Hypertens. 1989;7:769–76.

    Article  CAS  Google Scholar 

  18. Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y. Coronary circulation in dogs with an experimental decrease in aortic compliance. J Am Coll Cardiol. 1993;21:1497–506.

    Article  CAS  Google Scholar 

  19. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, Laurent S. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 2002;39:10–5.

    Article  CAS  Google Scholar 

  20. van Popele NM, Mattace-Raso FU, Vliegenthart R, Grobbee DE, Asmar R, van der Kuip DA, Hofman A, de Feijter PJ, Oudkerk M, Witteman JC. Aortic stiffness is associated with atherosclerosis of the coronary arteries. Circulation. 2005;112:2254–62.

    Article  Google Scholar 

  21. Chirinos JA, Khan A, Bansal N, et al. CRIC study investigators. Arterial stiffness, central pressures, and incident hospitalized heart failure in the chronic renal insufficiency cohort study. Circ Heart Fail. 2014;7:709–16.

    Article  Google Scholar 

  22. Tsao CW, Lyass A, Larson MG, Levy D, Hamburg NM, Vita JA, Benjamin EJ, Mitchell GF, Vasan RS. Relation of central arterial stiffness to incident heart failure in the community. J Am Heart Assoc. 2015;4(11):e002189. https://doi.org/10.1161/JAHA.115.002189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pandey A, Khan H, Newman AB, Lakatta EG, Forman D, Butler J, Berry JD. Arterial stiffness and risk of overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced ejection fraction. The Health ABC Study (Health, Aging, and Body Composition). Hypertension. 2017;69:267–74.

    Article  CAS  Google Scholar 

  24. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  Google Scholar 

  25. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  Google Scholar 

  26. Stassen FR, Fazzi GE, Leenders PJ, Smits JF, De Mey JG. Coronary arterial hyperreactivity and mesenteric arterial hyporeactivity after myocardial infarction in the rat. J Cardiovasc Pharmacol. 1997;29:780–8.

    Article  CAS  Google Scholar 

  27. Abhayaratna WP, Srikusalanukul W, Budge MM. Aortic stiffness for the detection of preclinical left ventricular diastolic dysfunction: pulse wave velocity versus pulse pressure. J Hypertens. 2008;26:758764.

    Article  Google Scholar 

  28. Borlaug BA, Melenovsky V, Redfield MM, Kessler K, Chang HJ, Abraham TP, Kass DA. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.

    Article  Google Scholar 

  29. Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, St John-Sutton M, Rietzschel ER, Asklepios Investigators. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension. 2012;60:64–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM, Assistance Publique—Hopitaux de Paris, and Paris Descartes University (SL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Laurent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Laurent, S., Hulot, JS., Boutouyrie, P. (2019). Role of Central Blood Pressure and Arterial Stiffening. In: Dorobantu, M., Mancia, G., Grassi, G., Voicu, V. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-93320-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93320-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93319-1

  • Online ISBN: 978-3-319-93320-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics