Skip to main content

Exoplanetary Biosignatures for Astrobiology

  • Chapter
  • First Online:
Biosignatures for Astrobiology

Part of the book series: Advances in Astrobiology and Biogeophysics ((ASTROBIO))

Abstract

Since life evolved on our planet there have been subtle interplays between biology and Earth System Components (atmosphere-lithosphere-ocean-interior). Life, for example, can impact weathering rates which, in turn, influence climate stabilizing feedback cycles on Earth. Photosynthesis is ultimately responsible for our oxygen-rich atmosphere, which favours the formation of the protective ozone layer. The recent rise of exoplanetary science has led to a re-examination of such feedbacks and their main drivers under different planetary conditions. In this work we present a brief overview of potential biosignatures (indicators of life) and review knowledge of the main processes, which influence them in an exoplanetary context. Biosignature methods can be broadly split into two areas, namely “in-situ” and “remote”. Criteria employed to detect biosignatures are diverse and include fossil morphology, isotope ratios, patterns in the chemical constituents of cells, degree of chirality, shifts from thermal or redox equilibrium, and changes in the abundance of atmospheric species. For the purposes of this review, our main focus lies upon gas-phase species present in Earth-like atmospheres, which could be detected remotely by spectroscopy. We summarize current knowledge based on the modern (and early) Earth and the Solar System then review atmospheric model studies for Earth-like planets, which predict climate, photochemistry and potential spectral signals of biosignature species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agúndez M (2017) Organohalogens in space. Nat Astron 1:655–656

    Article  ADS  Google Scholar 

  • Airapetian VS, Glocer A, Gronoff G et al (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young sun. Nat Geosci 9:452–455

    Article  ADS  Google Scholar 

  • Anbar AD, Duan Y, Lyons TW et al (2007) A whiff of oxygen before the great oxidizing event. Nature 317:1903–1906

    Google Scholar 

  • Arney G, Domagal-Goldman S, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of Hazy Archean Earth. Astrobiology 16:873–899

    Article  ADS  Google Scholar 

  • Arnold L, Gillet S, Lardière et al (2002) A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in Earthshine spectrum. Astron Astrophys 92:231–237

    Article  ADS  Google Scholar 

  • Atreya SK, Mahaffy PR, Wong AS (2007) Methane and related trace species on Mars: origin, loss, implications for life and habitability. Planet Space Sci 55:358–369

    Article  ADS  Google Scholar 

  • Barstow J, Irwin PGJ (2016) Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system? MNRAS 461:L92–L96

    Article  ADS  Google Scholar 

  • Bates DR, Nicolet M (1950) The photochemistry of atmospheric water vapor. J Geophys Res 55:301–327

    Article  ADS  Google Scholar 

  • Benneke B, Seager S (2012) Atmospheric retrieval for Super-Earths. Astrophys J 753:2

    Article  Google Scholar 

  • Benner SA (2010) Defining life. Astrobiology 10:1021–2030

    Article  ADS  Google Scholar 

  • Benton MJ, Twitchet RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365

    Article  Google Scholar 

  • Bolcar MR, Balasubramanian K, Crooke J et al (2016) Technology gap assessment for a future large-aperture ultraviolet-optical infrared space telescope. Astron Telesc Instrum Syst 2:041209

    Article  Google Scholar 

  • Boschker HTS, Middleburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol 40:85–95

    Article  Google Scholar 

  • Buick R (2007) Did the Proterozoic ‘Canfield ocean’ cause a laughing gas greenhouse? Geobiology 5:97–100

    Article  ADS  Google Scholar 

  • Campbell H, Squire RJ (2010) The mountains that triggered the Late Neoproterozoic increase in oxygen: the second great oxidation event. Geochim Cosmochim Acta 74:4187–4206

    Article  ADS  Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237:1–20

    Article  ADS  Google Scholar 

  • Catling DC, Krissansen-Totton J, Kiang NY, Crisp D, Robinson TD et al (2018) Exoplanet biosignatures: a framework for their assessment. Astrobiology 18:709–738

    Article  ADS  Google Scholar 

  • Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. The Lond Edin Dub Philps Mag J Sci 10:369–383

    Article  Google Scholar 

  • Cockell C (2016) Habitability: a review. Astrobiology 16:89–117

    Article  ADS  Google Scholar 

  • Court RW, Sephton MA (2012) Extrasolar planets and false atmospheric biosignatures: the role of micrometeoroids. Planet Space Sci 73:233–242

    Article  ADS  Google Scholar 

  • Cowan NB, Abbot DS, Voigt A (2012) A false positive for ocean glint on exoplanets: the latitude-albedo effect. Astrophys J 752:L3

    Article  ADS  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides upon the atmospheric ozone content. Q J R Met S 96:320–325

    Article  ADS  Google Scholar 

  • Des Marais DJ, Harwit MO, Jucks KW (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2:153–181

    Article  ADS  Google Scholar 

  • Dick SJ (1984) The plurality of worlds: the extra-terrestrial life debate from Democritus to Kant. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Domagal-Goldman S, Meadows VS, Claire MW (2011) Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11:419–441

    Article  ADS  Google Scholar 

  • Domagal-Goldman S, Segura A, Claire MW (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrphys J Lett 787:2

    Article  Google Scholar 

  • Dressing C, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. Astrophys J 807:45

    Article  ADS  Google Scholar 

  • Encrenaz T (2014) Infrared spectroscopy of exoplanets: observational constraints. Philos Trans R Soc A 372:20130083

    Article  ADS  Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial planets and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Elsevier, New York, pp 47–70

    Chapter  Google Scholar 

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50:1–29

    Article  Google Scholar 

  • Formisano V, Atreya S, Encrenaz T (2004) Detection of methane in the atmosphere of Mars. Nature 306:1758–1761

    Google Scholar 

  • Fortier A, Beck T, Benz W (2014) CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. J Astron Telesc Instrum Syst 9143

    Google Scholar 

  • Fujii T, Moynier F, Blichert-Toft J et al (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576

    Article  ADS  Google Scholar 

  • Fujii Y, Angerhausen D, Deitrick R et al (2018) Exoplanet biosignatures: observational prospects. Astrobiology 18(6). doi: https://doi.org/10.1089/ast.2017.1733

    Article  ADS  Google Scholar 

  • Gaidos E (2013) Candidate planets in the habitable zones of Kepler stars. Astophys J 770:2

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232

    Article  ADS  Google Scholar 

  • Gebauer S, Grenfell JL, Stock JW et al (2017) Evolution of Earth-like extrasolar planetary atmospheres. Astrobiology 17:27–54

    Article  ADS  Google Scholar 

  • Gebauer S, Grenfell JL, Lehmann R, Rauer H (2018) Evolution of Earth-like planetary atmospheres around M Dwarf Stars: assessing the atmospheres and biospheres with a coupled atmosphere biogeochemical model. Astrobiology 18:856–872

    Article  ADS  Google Scholar 

  • Godolt M, Grenfell JL, Hamann-Reinus A et al (2015) 3D climate modeling of Earth-like extrasolar planets orbiting different types of host stars. Planet Space Sci 111:62–76

    Article  ADS  Google Scholar 

  • Godolt M, Grenfell JL, Kitzmann D et al (2016) Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling. Astron Astrophys 592:A36

    Article  Google Scholar 

  • Grasset O, Dougherty MK, Coustenis A et al (2012) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21

    Article  ADS  Google Scholar 

  • Grenfell JL (2017) A review of exoplanetary biosignatures. Phys. Rep. 713:1–17

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grenfell JL, Stracke B, von Paris P et al (2007) The response of atmospheric chemistry on earthlike planets around F, G and K stars to small variations in orbital distance. Planet Space Sci 55:661–671

    Article  ADS  Google Scholar 

  • Grenfell JL, Rauer H, Selsis F et al (2010) Co-evolution of atmospheres, life and climate. Astrobiology 10:77–88

    Article  ADS  Google Scholar 

  • Grenfell JL, Gebuaer S, von Paris P et al (2011) Sensitivity of biomarkers to changes in chemical emissions in Earth’s Proterozoic atmosphere. Icarus 211:81–88

    Article  ADS  Google Scholar 

  • Grenfell JL, Griessmeier J-M, von Paris P et al (2012) Response of atmospheric biomarkers to NOx-induced photochemistry generated by stellar cosmic rays for Earth-like planets in the habitable zone of M dwarf stars. Astrobiology 12:1109–1122

    Article  ADS  Google Scholar 

  • Grenfell JL, Gebauer S, von Paris et al (2014) Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf stars to varying stellar UV radiation and surface biomass emissions. Planet Space Sci 98:66–76

    Article  ADS  Google Scholar 

  • Griffith RL, Wright JT, Maldonado J et al (2015) The G infrared search for extraterrestrial civilizations with large energy supplies. Astrophys J 217(2)

    Google Scholar 

  • Guzmán-Marmolejo A, Segura A, Escobar-Briones E (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13:550–559

    Article  ADS  Google Scholar 

  • Haagen-Smit AJ (1952) Chemistry and physiology of Los Angeles smog. Ind Eng Chem 44:1342–1346

    Article  Google Scholar 

  • Haghighipor N (2015) Eta-Earth. Encyclopedia of astrobiology. Springer, Heidelberg

    Google Scholar 

  • Hall DT, Strobel DF, Feldman PD et al (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373:677–681

    Article  ADS  Google Scholar 

  • Hall DT, Feldman PD, McGrath MIA et al (1998) The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys J 449:475–481

    Article  ADS  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ et al (2009) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    Article  ADS  Google Scholar 

  • Hedelt P, Alonso R, Brown T et al (2011) Venus transit 2004: illustrating the capacity of exoplanet transmission spectroscopy. Astron Astrophys 533:A136

    Article  Google Scholar 

  • Hedelt P, von Paris P, Godolt M et al (2013) Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars. Astron Astrophys 553:A9

    Article  Google Scholar 

  • Heller R, Barnes R (2013) Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13:18–46

    Article  ADS  Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Article  ADS  Google Scholar 

  • Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond Biol Sci 361:903–915

    Article  Google Scholar 

  • Holmen K (1992) The global carbon cycle. London Academic Press, London, pp 237–262

    Google Scholar 

  • Höning D, Hansen-Goos H, Airo A (2014) Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet Space Sci 98:5–13

    Article  ADS  Google Scholar 

  • Horler DNH, Dockray M, Barber J (1983) The red edge of plant leaf reflectance. Int J Remote Sens 4:273–288

    Article  Google Scholar 

  • Horneck G, Walter N, Westall F et al (2016) AstRoMap European Astrobiology Roadmap. Astrobiology 16:201–243

    Article  ADS  Google Scholar 

  • Horner J, Jones BW (2008) Jupiter – friend or foe? I: the asteroids. Int J Astrobiol 7:251–261

    Article  Google Scholar 

  • Hu R, Seager S (2014) Photochemistry in terrestrial planet atmospheres III. ApJ 784:1

    Article  Google Scholar 

  • Huang S (1959) Occurrence of life in the universe. Am Sci 47:397–402

    ADS  Google Scholar 

  • Hunten DM (1988) Mercury. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • International Panel on Climate Change (IPCC) Climate Change (2007) In: Solomon S et al (eds) The physical basis. IPCC, Geneva

    Google Scholar 

  • Joyce G, Deamer DW, Fleischaker GR (1994) In: Deamer DW, Fleichacker GR (eds) Origins of life: the central concepts. Jones and Bartlett, Boston, pp xi–xii

    Google Scholar 

  • Kaltenegger L, Sasselov D (2011) Exploring the habitable zone for Kepler planetary candidates. ApJ 736:2

    Article  Google Scholar 

  • Kaltenegger L, Traub WA, Jucks KW et al (2007) Spectral evolution of an Earth-like planet. ApJ 658:1

    Article  Google Scholar 

  • Kaltenegger L, Miguel Y, Rugheimer S (2012) Rocky exoplanet characterization and atmospheres. Int J Astrobiol 11:297–307

    Article  Google Scholar 

  • Kane SR, Hill ML, Kasting JF et al (2016) A catalogue of Kepler habitable zone exoplanet candidates. ApJ 830(1)

    Article  ADS  Google Scholar 

  • Kasting JF, Catling DC (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    Article  ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128

    Article  ADS  Google Scholar 

  • Kawahara H, Matsuo T, Takami M et al (2012) Can ground-based telescopes detect the 1.27 micron absorption feature as a biomarker in exoplanets? ApJ 758:1

    Article  Google Scholar 

  • Kiang NY, Segura A, Tinetti G et al (2007) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology. 7:252–274

    Article  ADS  Google Scholar 

  • Kislyakova KG, Johnstone CP, Odert P et al (2014) Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astron Astrophys 562:A116

    Article  Google Scholar 

  • Kitzmann D (2016) Revisiting the scattering greenhouse effect of CO2 ice clouds. ApJL 817:2

    Article  Google Scholar 

  • Kitzmann D, Patzer ABC, von Paris P et al (2011) Clouds in the atmospheres of extrasolar planets. Astron Astrophys 531:A62

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA et al (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136

    Article  ADS  Google Scholar 

  • Kopparapu RK, Ramses M, Schttelkotte J et al (2014) Habitable zones around main sequence stars: dependence upon planetary mass. ApJL 787:2

    Article  Google Scholar 

  • Korpela EJ, Sallmen SM, Greene DL (2015) Modeling indications of technology in planetary transit light curves – dark-side illumination. ApJ 809:2

    Article  Google Scholar 

  • Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biosignatures from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16:39–67

    Article  ADS  Google Scholar 

  • Kroopnick P, Craig H (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175:54–55

    Article  ADS  Google Scholar 

  • Kump LR (1991) Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19:299–302

    Article  ADS  Google Scholar 

  • Kump LR, Junium C, Arthur MC et al (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334:1694–1696

    Article  ADS  Google Scholar 

  • Lammer H, Bredehöft JH, Coustenis A et al (2009) What makes a planet habitable? Astron Astrophys Rev 17:181–189

    Article  ADS  Google Scholar 

  • Lasaga AC, Ohmoto H (2002) The oxygen geochemical cycle: dynamics and stability. Geochim Cosmochim Acta 66:361–381

    Article  ADS  Google Scholar 

  • Laskar J, Joutel F, Roboutal P et al (1993) Stabilization of the Earth’s obliquity by the Moon. Nature 361:615–617

    Article  ADS  Google Scholar 

  • Lederberg J (1965) Signs of life. Nature 207:9–13

    Article  ADS  Google Scholar 

  • Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460:720–723

    Article  ADS  Google Scholar 

  • Levine JS, Shaw EF (1983) In situ aircraft measurements of enhanced levels of N2O associated with thunderstorm lightning. Nature 303:312–314

    Article  ADS  Google Scholar 

  • Levine JS, Hughes RE, Chameides WL et al (1979) N2O and CO production by electric discharge: atmospheric implications. Geophys Res Lett 6:557–559

    Article  ADS  Google Scholar 

  • Lightsey PA, Atkinson CB, Clampin MC et al (2012) James Webb Space Telescope: large deployable telescope in space. Opt Eng 51:1

    Article  Google Scholar 

  • Lin HW, Abad GG, Loeb A (2014) Detecting industrial pollution in the atmospheres of Earth-planets. Astrophys J Lett 791:1

    Article  Google Scholar 

  • Lovelock JE (1965) A physical basis for life detection experiments. Nature 207:568–570

    Article  ADS  Google Scholar 

  • Ludwig W, Eggl S, Neubauer D et al (2016) Effective stellar flux calculations for limits of life-supporting zones of exoplanets. MNRAS 458:3752–3759

    Article  ADS  Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zone on M-dwarfs. Astrobiology 15:119–143

    Article  ADS  Google Scholar 

  • Margulis LM, Lovelock JE (1974) Biological modulation of the Earth’s atmosphere. Icarus 21:471–489

    Article  ADS  Google Scholar 

  • McElroy MB, McConnell JC (1971) Nitrous oxide: a natural source of NO. Am Met Soc 28:1095–1098

    Google Scholar 

  • Meadows VS, Reinhard CT, Arney GN et al (2018) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. Astrobiology 18(6):630–662

    Article  ADS  Google Scholar 

  • Merlis TM, Schneider T (2010) Atmospheric dynamics of Earth-like tidally-locked aquaplanets. J Adv Mod Earth Sys 2:13

    Google Scholar 

  • Mennesson B, Gaudi S, Seager S et al (2016) The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements. J Astron Telesc Instrum Syst 9904

    Google Scholar 

  • Misra A, Meadows VS, Claire MW et al (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86

    Article  ADS  Google Scholar 

  • Montmessin F, Bertaux JL, Lefèvre F et al (2011) A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216:82–85

    Article  ADS  Google Scholar 

  • Morrison D, Owen T (2003) The planetary system, 3rd edn. Addison-Wesley, Reading, MA

    Google Scholar 

  • Morton TD, Swift J (2014) The radius distribution of planets around cool stars. Astrophys J 791:10

    Article  ADS  Google Scholar 

  • Muller C (2013) N2O as a biomarker: from the Earth and solar system to exoplanets. Astrophys Spa Sci Proc 35:99–106

    Article  Google Scholar 

  • Naa Mvondo D, Navarro-Gonzalez R, McKay CP et al (2001) The production of nitrogen oxides by lightning and coronal discharges in simulated early Earth, Venus and Mars environments. Adv Space Res 27:217–223

    Article  ADS  Google Scholar 

  • Noack L, Rivoldini A, Van Hoolst T (2017) Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. PEP 269:40–57

    ADS  Google Scholar 

  • Noll KS, Roush TL, Cruikshank DP et al (1997) Detection of ozone on Saturn’s satellites Rhea and Dione. Nature 388:45–47

    Article  ADS  Google Scholar 

  • O’Malley-James JT, Greaves JS, Raven JA et al (2014) Swansong Biospheres II: the final signs of life on terrestrial exoplanets near the end of their habitable lifetimes. Int J Astrobiol 13:229–243

    Article  Google Scholar 

  • Pallé E, Osorio MRZ, Barena R et al (2009) Earth’s transmission spectrum from lunar eclipse measurements. Nature 459:814–816

    Article  ADS  Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL et al (2000) Greenhouse warming by CH4 in the atmosphere of Early Earth. J Geophys Res 105:11,981–11,990

    Article  ADS  Google Scholar 

  • Perrier S, Bertaux JL, Lefèvre F et al (2006) Global distribution of total ozone on Mars from SPCAM/MEX UV measurements. J Geophys Res 111:E9

    Article  Google Scholar 

  • Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734:L13

    Article  ADS  Google Scholar 

  • Pilcher CB (2004) Biosignatures of Early Earths. Astrobiology 3:471–486

    Article  ADS  Google Scholar 

  • Ramirez RM, Kopparapu R, Zugger ME et al (2014) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63

    Article  ADS  Google Scholar 

  • Rauer H, Gebauer S, von Paris P et al (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. Astron Astrophys 529:A8

    Article  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 Mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2007) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84

    Article  ADS  Google Scholar 

  • Rein H, Fujii Y, Spiegel DS (2014) Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proc Natl Acad Sci USA 111:6871–6875

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspeck R et al (2014) Transiting exoplanet survey satellite. J Astron Telesc Instrum Syst 1:014003

    Article  Google Scholar 

  • Roberson AL, Roadt J, Halevy I et al (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic eon. Geobiology 9:313–320

    Article  Google Scholar 

  • Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys J 781:1

    Article  Google Scholar 

  • Rugheimer S, Kaltenegger L, Segura A et al (2015) Effect of UV on the spectral fingerprints of Earth-like planets orbiting M-stars. Astrobiology 809:1–16

    Google Scholar 

  • Sagan C, Thompson WR, Carlson R et al (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:375–377

    Article  Google Scholar 

  • Samarkin VA, Madigan MT, Bowles MW et al (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geophys 3:341–344

    Google Scholar 

  • Sanroma E, Palle E, Parenteau MN et al (2014) Characterizing the purple Earth: measuring the globally-integrated spectral variability of the Archaean Earth. Astrophys J 780(1)

    Google Scholar 

  • Scalo J, Segura A, Fridlund M et al (2007) M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7:85–166

    Article  ADS  Google Scholar 

  • Schidlowski M (1988) A 3800 million-year isotopic record of life from carbon in sedimentary rocks. Nature. 333:313–318

    Article  ADS  Google Scholar 

  • Schindler TL, Kasting JF (2000) Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145:262–271

    Article  ADS  Google Scholar 

  • Schneider J (1994) On the search for O2 in extrasolar planets. Astrophys Space Sci 212:321–325

    Article  ADS  Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  ADS  Google Scholar 

  • Schwieterman E et al (2015) Non photosynthetic pigments as potential biosignatures. Astrobiology 15:341–361

    Article  ADS  Google Scholar 

  • Schwieterman EW, Cockell CS, Meadows VS et al (2016) Identifying planetary biosignature imposters: spectral features of CO and O4 resulting from O2/O3 production. Astrophys J 819(1)

    Google Scholar 

  • Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S et al (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708

    Article  ADS  Google Scholar 

  • Seager S, Turner E, Schafer LJ et al (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390

    Article  ADS  Google Scholar 

  • Seager S, Bains W, Hu R (2013) Biosignature gases in H2-dominated atmospheres on rocky planets. Astrophys J 777:2

    Article  ADS  Google Scholar 

  • Seager S, Bains W, Petkowski JJ (2016) Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology 16:465–485

    Article  ADS  Google Scholar 

  • Segura A, Krelove K, Kasting JF et al (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708

    Article  ADS  Google Scholar 

  • Segura A, Kasting JF, Meadows VS et al (2005) Biosignatures from Earth-like planets around M-stars. Astrobiology 5:706–725

    Article  ADS  Google Scholar 

  • Segura A, Walkowicz MVS et al (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M-dwarf. Astrobiology 10:751–771

    Article  ADS  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) From air pollution to climate change. Wiley, Hoboken, NJ

    Google Scholar 

  • Selsis F, Despoit D, Parisot J-P et al (2002) Signature of life on exoplanets: can Darwin produce false positive detections? Astron Astrophys 388:985–1003

    Article  ADS  Google Scholar 

  • Shields AL, Ballard S, Johnson JA (2016) The habitability of planets orbiting M-dwarf stars. Phys Res 663:1–38

    ADS  MathSciNet  Google Scholar 

  • Simoncini E, Virgo N, Kleidon A et al (2013) Quantifying drivers of chemical disequilibrium: theory and application to methane in Earth’s atmosphere. Earth Syst Dyn 4:317–331

    Article  ADS  Google Scholar 

  • Slanger TG, Copeland RA (2003) Energetic oxygen in the upper atmosphere and the laboratory. Chem Rev 103:4731–4766

    Article  Google Scholar 

  • Smith KC (2016) Life is hard: countering definitional pessimism concerning the definition of life. Int J Astrobiol 15:277–289

    Article  Google Scholar 

  • Smith AK, Marsh DR (2005) Processes that account for the ozone maximum at the mesopause. J Geophys Res 110:D23

    Article  Google Scholar 

  • Snellen I (2014) High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths. Philos Trans R Soc A 372:20130075

    Article  ADS  Google Scholar 

  • Stam DM (2008) Spectropolarimetric signatures of Earth-like extrasolar planets. Astron Astrophys 482:989–1007

    Article  ADS  Google Scholar 

  • Stamenkovic V, Noack L, Breuer D et al (2012) The influence of pressure-dependent viscosity on the thermal evolution of Super-Earths. Astrophys J 748:1

    Article  ADS  Google Scholar 

  • Sterzik MF, Bagnul S, Palle E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483:64–66

    Article  ADS  Google Scholar 

  • Stevens A, Forgan D, James JOM (2016) Observational signatures of self-destructive civilizations. Int J Astrobiol 15:33–44

    Article  Google Scholar 

  • Stolarski RJ, Cicerone RS (1974) Stratospheric chlorine: a possible sink for ozone. Can J Chem 52:1610–1615

    Article  Google Scholar 

  • Sverjensky DA, Lee N (2010) The great oxidation event and mineral diversification. Elements 6:31–36

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse Gas Meas Manag 1:17–26

    Article  ADS  Google Scholar 

  • Tabataba-Vakili F, Grenfell JL, Griessmeier J-M et al (2016) Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron Astrophys 585:A96

    Article  ADS  Google Scholar 

  • Tackley PJ, Ammann M, Brodholt JP (2013) Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225:50–61

    Article  ADS  Google Scholar 

  • Teolis BD, Jones GH, Miles PF (2010) Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea. Science 333:6012

    Google Scholar 

  • Tian F, France K, Linsky JL et al (2014) High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet Sci 385:22–27

    Article  ADS  Google Scholar 

  • Tosi N, Godolt M, Stracke B et al (2017) The habitability of a stagnant-lid Earth. Astron Astrophys 605:A71

    Article  Google Scholar 

  • Traub WA (2015) Steps towards eta-Earth from Kepler data. Int J Astrobiol 14:359–363

    Article  Google Scholar 

  • Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–772

    Article  ADS  Google Scholar 

  • Vogel G (1999) Expanding the habitable zone. Science 286:70–71

    Article  Google Scholar 

  • von Paris P, Cabrera J, Godolt M et al (2011) Spectroscopic characterization of the atmospheres of potentially habitable planets: Gl581d as a model case study. Astron Astrophys 534:A26

    Article  Google Scholar 

  • von Paris P, Hedelt P, Selsis F et al (2013) Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. Astron Astrophys 551:A120

    Article  Google Scholar 

  • Walker SI, Bains W, Cronin L et al (2018) Exoplanet biosignatures: future directions. Astrobiology 18(6):779–824

    Article  ADS  Google Scholar 

  • Wang Y, Tian F, Li T et al (2016) On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres. Icarus 266:15–23

    Article  ADS  Google Scholar 

  • Wayne RP (1993) Chemistry of atmospheres, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Webster CR, Mahaffy P, Atreya SK (2015) Mars methane detection and variability at gale crater. Science 412:415

    Article  ADS  Google Scholar 

  • Werner MW, Swain MR, Vasisht G et al (2016) Extension of ATLAST/LUVOIR’s capabilities to 5 μm or beyond. J Astron Telesc Instrum Syst 2:041205

    Article  Google Scholar 

  • Williams DM, Gaidos E (2008) Detecting the glint of starlight on the oceans of distant planets. Icarus 195:927–937

    Article  ADS  Google Scholar 

  • Woolf NJ, Smith PS, Traub WA et al (2002) The spectrum of Earthshine: a pale blue dot observed from the ground. Astrophys J 574:430–433

    Article  ADS  Google Scholar 

  • Wordsworth R, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785:1–4

    Article  Google Scholar 

  • World Meteorological Organization (WMO) (1995) Scientific assessment of ozone depletion: 1994. Report Number 37. WMO, Geneva

    Google Scholar 

  • Yan F, Fosbury RAE, Petr-Gotzens MG et al (2015) High-resolution transmission spectrum of the Earth’s atmosphere-seeing Earth as an exoplanet using a lunar eclipse. Int J Astrobiol 14:255–266

    Article  Google Scholar 

  • Yang J, Cowan NB, Abbot DS (2013) Stabilising cloud feedback dramatically expands the habitable zone of tidally-locked planets. ApJL 771:2

    Article  Google Scholar 

  • Yung YL, DeMore WB (1999) Photochemistry of planetary atmospheres. Oxford University Press, Oxford

    Google Scholar 

  • Zahnle K, Freedman RS, Catling DC (2011) Is there methane on Mars? Icarus 212:493–503

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lee Grenfell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grenfell, J.L. (2019). Exoplanetary Biosignatures for Astrobiology. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_11

Download citation

Publish with us

Policies and ethics