Skip to main content

A Brief Overview of Layered Silicates and Polymer/Layered Silicate Nanocomposite Formation

  • Chapter
  • First Online:
Processing of Polymer-based Nanocomposites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 277))

  • 738 Accesses

Abstract

Layered silicate -containing polymer nanocomposites attract great interest in today’s advanced composite materials research because it is possible to achieve impressive property improvements when compared with neat polymers or conventional filler-filled composites. In its pristine form layered silicate is hydrophilic and not compatible with hydrophobic polymer matrices. To make layered silicate compatible with hydrophobic polymer matrix, one must convert hydrophilic surface to an organophilic one. This chapter briefly summarizes the structure and properties of pristine and organically modified layered silicates. This chapter also provides overview of layered silicate –containing polymer nanocomposites formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Source: Amethyst Galleries, Inc. web site, accessed on April 18, 2006.

    Google Scholar 

  2. Brindly SW, Brown G, editors. Crystal structure of clay minerals and their x-ray diffraction. London: Mineralogical Society; 1980.

    Google Scholar 

  3. Ray SS, Okamoto K, Okamoto M. Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules. 2003;36:2355–67.

    Article  ADS  Google Scholar 

  4. Source: CO-OP Chemical Company, Japan web site, accessed on July 20, 2005.

    Google Scholar 

  5. Yalcin B, Cakmak M. The role of plasticizer on the exfoliation and dispersion and fracture behavior of clay particles in PVC matrix: a comprehensive morphological study. Polymer. 2004;45:6623–38.

    Article  Google Scholar 

  6. Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8:29–35.

    Article  Google Scholar 

  7. Giannelis EP, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer Brushes. Adv Polymer Sci. 1999;138:107–47.

    Google Scholar 

  8. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15:11–29.

    Article  Google Scholar 

  9. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J. Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci. 1999;5:67–92.

    Article  Google Scholar 

  10. Ray SS, Biswas M. Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polymer Sci. 2001;155:167–221.

    Article  Google Scholar 

  11. Ray SS, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–642.

    Article  Google Scholar 

  12. Ray SS, Bousmina M. Biodegradable polymer and their layered silicate nanocomposites: in greening the twenty first century materials world. Prog Mater Sci. 2005;50:962–1079.

    Article  Google Scholar 

  13. Krishnamoorti R, Vaia RA, Giannelis EP. Structure and dynamics of polymer-layered silicate nanocomposites. structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater. 1996;8:1728–34.

    Article  Google Scholar 

  14. Aranda P, Ruiz-Hitzky E. Poly(ethylene oxide)-silicate intercalation materials. Chem Mater. 1992;4:1395–403.

    Article  Google Scholar 

  15. Greenland DJ. Adsorption of poly(vinyl alcohols) by montmorillonite. J Colloid Sci. 1963;18:647–64.

    Article  Google Scholar 

  16. Fischer H. Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C. 2003;23:763–72.

    Article  Google Scholar 

  17. Vaia RA, Teukolsky RK, Giannelis EP. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem Mater. 1994;6:1017–22.

    Article  Google Scholar 

  18. Lagaly G. Interaction of alkylamines with different types of layered compounds. Solid State Ionics. 1986;22:43–51.

    Article  Google Scholar 

  19. Lagaly G. Characterization of clays by organic compounds. Clay Minerials. 1981;16:1–21.

    Article  ADS  Google Scholar 

  20. Weiss A. Proceedings of the tenth national conference on clays and clay. New York: Pergamon Press; 1962. p. 191–224.

    Google Scholar 

  21. Weiss A. Orgaic derivatives of mica-type layered silicates. Angew Chem Int Ed. 1963;2:134–44.

    Article  Google Scholar 

  22. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953. p. 399–431

    Google Scholar 

  23. Zeng QH, Yu AB, Lu GQ, Standish RK. Molecular dynamic simulation of organic-inorganic nanocomposites Layering behaviour and interlayer structure of organoclays. Chem Mater. 2003;15:4732–38.

    Google Scholar 

  24. Wang LQ, Liu J, Exarhos GJ, Flanigan KY, Bordia R. Confirmation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. J. Phys. Chem. B. 2000;104:2810–6.

    Article  Google Scholar 

  25. Li YQ, Ishida H. Thermal transition of aliphatic amines in a nano-confined space with and without the presence of polymer. In: 22nd annual meeting of the American Chemical Society. Chicago: American Chemical Society, August 2001.

    Google Scholar 

  26. Ray SS. Clay-containing polymer nanocomposites: from fundamental to real applications. Amsterdam: Elsevier; 2013.

    Google Scholar 

  27. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal DS. One dimensional nanostructured materials. Prog Mater Sci. 2007;52:699–913.

    Article  Google Scholar 

  28. Tran HD, Li D, Kaner RB. One-Dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater. 2009;21:1487–99.

    Article  Google Scholar 

  29. Vaia RA, Giannelis EP. Lattice models of polymer melt intercalation in organically-modified layered silicates. Macromolecules. 1997;30:7990–9.

    Article  ADS  Google Scholar 

  30. Vaia RA, Giannelis EP. Polymer melts intercalation in organically-modified silicates: model predictions and experiment. Macromolecules. 1997;30:8000–9.

    Article  ADS  Google Scholar 

  31. Balazs AC, Singh C, Zhulina E. Modeling the interactions between polymers and clay surfaces through self-consistent field theory. Macromolecules. 1998;31:8370–81.

    Article  ADS  Google Scholar 

  32. Fleer G, Cohen-Stuart MA, Scheutjens JMHM, Cosgrove TV. Polymers at interfaces. London: Chaoman and Hall; 1993.

    Google Scholar 

  33. Kuznetsov DV, Balazs AC. Scalling theory for end-functionalized polymers confined between two surfaces: predictions for fabricating polymer/clay nanocomposites. J. Chem. Phys. 2000;112:4365–75.

    Article  ADS  Google Scholar 

  34. Lyatskaya Y, Balazs AC. Modeling the phase behaviour of polymer-clay composites. Macromolecules. 1998;31:6676–80.

    Article  ADS  Google Scholar 

  35. Ginzburg VV, Balazs AC. Calculating phase diagrams of polymer-platelet mixtures using density functional theory: implications for polymer/clay composites. Macromolecules. 1999;32:5681–8.

    Article  ADS  Google Scholar 

  36. Lui AJ, Fredrickson G. Free energy functionals for semiflexible polymer solutions and blends. Macromolecules. 1993;26:2817–24.

    Article  ADS  Google Scholar 

  37. Chiu HW, Kyu T. Equilibrium phase behavior of nematic mixtures. J Chem Phys. 1995;103:7471–81.

    Article  ADS  Google Scholar 

  38. Chiu HW, Kyu T. Phase equilibria of a polymer–smectic-liquid-crystal mixture. Phys Rev E. 1996;53:3618–22.

    Article  ADS  Google Scholar 

  39. Chiu HW, Kyu T. Phase diagrams of a binary smectic-A mixture. J Chem Phys. 1997;107:6859–66.

    Article  ADS  Google Scholar 

  40. Somoza AM, Tarazona P. Density functional approximation for hard-body liquid crystals. J Chem Phys. 1989;91:517–27.

    Article  ADS  Google Scholar 

  41. Tarazona P. Free-energy density functional for hard spheres. Phys Rev A. 1985;31:2672–9.

    Article  ADS  Google Scholar 

  42. Bhushan B, Israelachvili JN, Landman U. Nanotribology: friction, wear and lubrication at the atomic scale. Nature (London). 1995;374:607–17.

    Article  ADS  Google Scholar 

  43. Horn RG, Israelachvili JN. Molecular organization and viscosity of a thin film of molten polymer between two surfaces as probed by force measurements. Macromolecules. 1988;21:2836–42.

    Article  ADS  Google Scholar 

  44. Christenson HK, Gruen DWR, Horn RG, Israelachvili JN. Structuring in liquid alkanes between solid surfaces: force measurements and mean-field theory. J. Chem. Phys. 1987;87:1834–41.

    Article  ADS  Google Scholar 

  45. Reiter G, Demirel AL, Granick S. From static to kinetic friction in confined liquid films. Science. 1994;263:1741–4.

    Article  ADS  Google Scholar 

  46. Demirel AL, Granick S. Glasslike transition of a confined simple fluid. Phys Rev Lett. 1996;77:2261–4.

    Article  ADS  Google Scholar 

  47. Manias E, Hadziioannou G, Bitsanis I, Ten Brinke G. Stick and slip behaviour of confined oligomer melts under shear. A molecular-dynamics study. Europhys Lett. 1993;24:99–104.

    Article  ADS  Google Scholar 

  48. Manias E, Bitsanis I, Hadziioannou G, Ten Brinke G. On the nature of shear thinning in nanoscopically confined films. Europhys Lett. 1996;33:371–6.

    Article  ADS  Google Scholar 

  49. Manias E, Subbotin A, Hadziioannou G, Ten Brinke G. Adsorption-desorption kinetics in nanoscopically confined oligomer films under shear. Mol Phys. 1995;85:1017–36.

    Article  ADS  Google Scholar 

  50. Baljon ARC, Robbins MO. Energy dissipation during rupture of adhesive bonds. Science. 1996;271:482–4.

    Article  ADS  Google Scholar 

  51. Baljon ARC, Robbins MO. Adhesion and friction of thin films. MRS Bull. 1997;22:22–4.

    Article  Google Scholar 

  52. Gupta SA, Cochran HD, Cummings PT. Shear behavior of squalane and tetracosane under extreme confinement. I. Model, simulation method, and interfacial slip. J. Chem. Phys. 1997;107:10316–26.

    Article  ADS  Google Scholar 

  53. Stevens MJ, Mondollo M, Grest GS, Cui ST, Crochan HD, Cummings PT. Comparison of shear flow of hexadecane in a confined geometry and in bulk. J Chem Phys. 1997;106:7303–13.

    Article  ADS  Google Scholar 

  54. Bitsanis IA, Pan C. The origin of “glassy” dynamics at solid–oligomer interfaces. J Chem Phys. 1993;99:5520–7.

    Article  ADS  Google Scholar 

  55. Ballamudi RK, Bitsanis IA. Energetically driven liquid–solid transitions in molecularly thin n-octane films. J Chem Phys. 1996;105:7774–82.

    Article  ADS  Google Scholar 

  56. Thompson PA, Troian SM. A general boundary condition for liquid flow at solid surfaces. Nature (London). 1997;389:360–2.

    Article  ADS  Google Scholar 

  57. Thompson PA, Robbins MO. Shear flow near solids: epitaxial order and flow boundary conditions. Phys Rev A. 1990;41:6830–7.

    Article  ADS  Google Scholar 

  58. Cracknell RF, Nicholson D, Gubbins KE. Molecular dynamics study of the self-diffusion of supercritical methane in slit-shaped graphitic micropores. J Chem Soc Faraday Trans. 1995;91:1377–84.

    Article  Google Scholar 

  59. Cracknell RF, Nicholson D, Quirke N. Direct molecular dynamics simulation of flow down a chemical potential gradient in a slit-shaped micropore. Phys Rev Lett. 1995;74:2463–6.

    Article  ADS  Google Scholar 

  60. Nicholson D, Cracknell RF, Quirke N. A transition in the diffusivity of adsorbed fluids through micropores. Langmuir. 1996;12:4050–2.

    Article  Google Scholar 

  61. Maginn EJ, Bell AT, Theodorou DN. Transport diffusivity of methane in silicalite from equilibrium and nonequilibrium simulations. J Phys Chem. 1993;97:4173–81.

    Article  Google Scholar 

  62. Lee JY, Baljon ARC, Loring RF, Panagiotopoulos AZ. Simulation of polymer melt intercalation in layered nanocomposites. J Chem Phys. 1998;109:10321–30.

    Article  ADS  Google Scholar 

  63. Kremer K, Grest GS. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys. 1990;92:5057–86.

    Article  ADS  Google Scholar 

  64. Tries V, Paul W, Baschnagel J, Binder K. Modeling polyethylene with the bond fluctuation model. J Chem Phys. 1997;106:738–48.

    Article  ADS  Google Scholar 

  65. Baljon ARC, Lee JY, Loring AF. Molecular view of polymer flow into a strongly attractive slit. J Chem Phys. 1999;111:9068–72.

    Article  ADS  Google Scholar 

  66. Manias E, Chen H, Krishnamoorti R, Genzer J, Kramer EJ, Giannelis EP. Intercalation kinetics of long polymers in 2 nm confinements. Macromolecules. 2000;33:7955–66.

    Article  ADS  Google Scholar 

  67. Lee S, Yoo J, Lee JW. Water-assisted extrusion of polypropylene/clay nanocomposites in high shear condition. J Ind Eng Chem. 2015;31:317–22.

    Article  Google Scholar 

  68. Nguyen QT, Baird DG. An improved technique for exfoliating and dispersing nanoclay particles into polymer matrices using supercritical carbon dioxide. Polymer. 2007;48:6923–33.

    Article  Google Scholar 

  69. Deka BK, Maji TK. Effect of coupling agent and nanoclay properties of HDPE, LDPE, PP, PVC, blend and phargamites karka nanocomposites. Compos Sci Technol. 2010;70:1755–61.

    Article  Google Scholar 

  70. Li J, Ton-That MT, Leelapornpisit W, Utracki LA. Melt compounding of polypropylene-based clay nanocomposites. Polym Eng Sci. 2007;47:1447–58.

    Article  Google Scholar 

  71. Lertwinimolnum W, Vergnes B. Influence of screw profile and extrusion conditions on the microstructure of polypropylene/organoclay nanocomposites. In: Polymer engineering and science; 2007.

    Google Scholar 

  72. Bandyopadhyay J, Ray SS, Salehiyan R, Ojijo V. Effect of the mode of nanoclay inclusion on morphology development and rheological properties of nylon6/ethyl-vinyl-alcohol blend composites. Polymer. 2017;126:96–108.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology and the Council for Scientific and Industrial Research for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha Ray, S., Ojijo, V. (2018). A Brief Overview of Layered Silicates and Polymer/Layered Silicate Nanocomposite Formation. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-319-97779-9_3

Download citation

Publish with us

Policies and ethics