Skip to main content

Spin-Transfer Torques in Single-Crystalline Nanopillars

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 46))

  • 1188 Accesses

Abstract

Current-induced magnetization switching (CIMS) due to spin-transfer torques is an advanced switching concept for magnetic nanostructures in spintronic devices. Most previous studies employed sputtered, polycrystalline samples. Here, we report on the first measurements of CIMS in single-crystalline nanopillars. Fe(14 nm)/Cr(0.9 nm)/Fe(10 nm)/Ag(6 nm)/Fe(2 nm) multilayers are deposited by molecular beam epitaxy. The central Fe layer is coupled to the 14 nm-thick Fe layer by interlayer exchange coupling over Cr, and the topmost Fe layer is decoupled (free layer). The maximum observed giant magnetoresistance with current perpendicular to the layers (CPP-GMR) is 2.6% at room temperature and up to 5.6% at 4 K. Nanopillars with a diameter of 150nm are prepared by optical and e-beam lithography. The opposite scattering spin asymmetries of Fe/Cr and Fe/Ag interfaces enable us to observe CIMS at small magnetic fields and opposite current polarity in a single device. The critical current density for switching is j c ≈ 108 A/cm2. At high magnetic fields, step-like resistance changes are measured at positive currents and are attributed to current-driven magnetic excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friedrich, J. Chazelas: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39, 4828–4830 (1989)

    Article  ADS  Google Scholar 

  3. J. C. Slonczewski: Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  4. L. Berger: Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  5. F. J. Albert, J. A. Katine, R. A. Buhrman, D. C. Ralph: Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett. 77, 3809–3811 (2000)

    Article  ADS  Google Scholar 

  6. J. Grollier, V. Cros, A. Hamzic, J. M. George, H. Jaffrès, A. Fert, G. Faini, J. B. Youssef, H. Legall: Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett. 78, 3663–3665 (2001)

    Article  ADS  Google Scholar 

  7. S. Urazhdin, N. O. Birge, W. P. Pratt Jr., J. Bass: Current-driven magnetic excitations in permalloy-based multilayer nanopillars, Phys. Rev. Lett. 91, 146803 (2003)

    Article  ADS  Google Scholar 

  8. I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph, R. A. Buhrman: Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques, Science 307, 228–231 (2005)

    Article  ADS  Google Scholar 

  9. M. D. Stiles, D. R. Penn: Calculation of spin-dependent interface resistance, Phys. Rev. B 61, 3200–3202 (2000)

    Article  ADS  Google Scholar 

  10. M. D. Stiles, A. Zangwill: Anatomy of spin-transfer torque, Phys. Rev. B 66, 014407 (2002)

    Article  ADS  Google Scholar 

  11. T. Valet, A. Fert: Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099–7113 (1993)

    Article  ADS  Google Scholar 

  12. A. Barthélémy, A. Fert, F. Petroff: Handbook of Magnetic Materials, vol. 12 (Elsevier, Amsterdam 1999) Chap. Giant Magnetoresistance in Magnetic Multilayers

    Google Scholar 

  13. D. E. Bürgler, C. M. Schmidt, J. A. Wolf, T. M. Schaub, H.-J. Güntherodt: Ag films on Fe/GaAs(001): From clean surfaces to atomic Ga structures, Surf. Sci. 366, 295–305 (1996)

    Article  Google Scholar 

  14. M. Buchmeier: unpublished work

    Google Scholar 

  15. D. E. Bürgler, P. Grünberg, S. O. Demokritov, M. T. Johnson: Handbook of Magnetic Materials, vol. 13 (Elsevier, Amsterdam 2001) Chap. Interlayer Exchange Coupling in Layered Magnetic Structures, pp. 1–85

    Google Scholar 

  16. M. Buchmeier, B. K. Kuanr, R. R. Gareev, D. E. Bürgler, P. Grünberg: Spinwaves in magnetic double layers with strong antiferromagnetic interlayer exchange coupling: Theory and experiment, Phys. Rev. B 67, 184404 (2003)

    Article  ADS  Google Scholar 

  17. C. Kittel: Einführung in die Festkörperphysik (R. Oldenbourg Verlag, München, Wien 1996)

    Google Scholar 

  18. E. P. Wohlfarth (Ed.): Ferromagnetic Materials (North-Holland Publishing Company, Amsterdam, New York, Oxford 1980)

    Google Scholar 

  19. H. Namatsu, T. Yamaguchi, M. Nagase, K. Yamazaki, K. Kurihara: Nanopatterning of a hydrogen silsesquioxane Resist with reduced linewidth fluctuations, Microelectron. Eng. 41/42, 331–334 (1998)

    Article  Google Scholar 

  20. P. G. Glöersen: Ion-beam etching, J. Vac. Sci. & Tech. 12, 28–35 (1975)

    Article  ADS  Google Scholar 

  21. M. AlHajDarwish, H. Kurt, S. Urazhdin, A. Fert, R. Loloee, W. P. Pratt, Jr., J. Bass: Controlled Normal and Inverse Current-Induced Magnetization Switching and Magnetoresistance in Magnetic Nanopillars, Phys. Rev. Lett. 93, 157203 (2004)

    Article  ADS  Google Scholar 

  22. J. M. George, L. G. Pereira, A. Barthélémy, F. Petroff, L. Steren, J. L. Duvail, A. Fert, R. Loloee, P. Holody, P. A. Schroeder: Inverse spin-valve-type magnetoresistance in spin engineered multilayered structures, Phys. Rev. Lett. 72, 408–411 (1994)

    Article  ADS  Google Scholar 

  23. M. Buchmeier, R. Schreiber, D. E. Bürgler, P. Grünberg: Inverse giant magnetoresistance due to spin-dependent interface scattering in Fe/Cr/Au/Co, Europhys. Lett. 63, 874–880 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bürgler, D.E., Dassow, H., Lehndorff, R., Schneider, C.M., van der Hart, A. (2008). Spin-Transfer Torques in Single-Crystalline Nanopillars. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_10

Download citation

Publish with us

Policies and ethics