Skip to main content

GaInAs/AlAsSb Quantum Cascade Lasers: A New Approach towards 3-to-5 μm Semiconductor Lasers

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 46))

  • 1189 Accesses

Abstract

At present GaInAs/AlInAs based quantum cascade (QC) lasers represent the state-of-the-art with respect to the short-wavelength (< 5 μm) performance of the QC laser concept. This performance, however, is intrinsically limited by the available conduction band offset of 0.5–0.7 eV, thus motivating research on materials combinations with larger band offsets, such as GaN/AlN and InAs/AlSb. A particularly attractive materials combination is GaInAs/AlAsSb grown lattice-matched on InP. It offers a Γ-point conduction band offset of ∼ 1.6 eV, while the mature growth and processing technologies available for InP-based lasers can be used and the favorable properties of InP as a waveguide cladding material can be exploited. In this paper recent advances in GaInAs/AlAsSb QC laser research will be reviewed, leading to a maximum pulsed operating temperature of > 400K for devices emitting at 4.6 μm and an impressive maximum peak output power of 8W at 77K (corresponding to a total power efficiency of 23 %) for a QC laser emitting at 3.7 μm. Furthermore, current limitations of the GaInAs/AlAsSb QC laser concept and challenges for future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Science 264, 553 (1994).

    Article  ADS  Google Scholar 

  2. J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, W. K. Chan, Appl. Phys. Lett. 81, 3146 (2002).

    Article  ADS  Google Scholar 

  3. E. P. O’Reilly and A. Adams, IEEE J. Quantum Electron. 30, 366 (1994).

    Article  ADS  Google Scholar 

  4. C. Sirtori, H. Page, C. Becker, V. Ortiz, IEEE J. Quantum Electron. 38, 547 (2002).

    Article  ADS  Google Scholar 

  5. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, Appl. Phys. Lett. 72, 680 (1998).

    Article  ADS  Google Scholar 

  6. J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, M. Razeghi, IEEE Photonics Technol. Lett. 17, 1154 (2005).

    Article  ADS  Google Scholar 

  7. A. Evans, J. S. Yu, S. Slivken, M. Razeghi, Appl. Phys. Lett. 85, 2166 (2004).

    Article  ADS  Google Scholar 

  8. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, M. Razeghi, Appl. Phys. Lett. 87, 041104 (2005).

    Article  ADS  Google Scholar 

  9. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002).

    Article  ADS  Google Scholar 

  10. J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006).

    Article  ADS  Google Scholar 

  11. A. Friedrich, G. Scarpa, G. Boehm, M.-C. Amann, Electron. Lett. 40, 1416 (2004).

    Article  Google Scholar 

  12. D. Hofstetter, M. Beck, T. Aellen, J. Faist, Appl. Phys. Lett. 78, 396 (2001).

    Article  ADS  Google Scholar 

  13. R. Köhler, C. Gmachl, A. Tredicucci, F. Capasso, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 76, 1092 (2000).

    Article  ADS  Google Scholar 

  14. N. Ulbrich, G. Scarpa, A. Sigl, J. Roßkopf, G. Böhm, G. Abstreiter, M.-C. Amann, Electron. Lett. 37, 1341 (2002).

    Article  Google Scholar 

  15. Q. Yang, Ch. Mann, F. Fuchs, R. Kiefer, K. Köhler, N. Rollbühler, H. Schneider, J. Wagner, Appl. Phys. Lett. 80, 2048 (2002).

    Article  ADS  Google Scholar 

  16. Q. Yang, Ch. Mann, F. Fuchs, K. Köhler, W. Bronner, J. Crystal Growth 278, 714 (2005).

    Article  ADS  Google Scholar 

  17. M. P. Semtsiv, M. Ziegler, S. Dressler, W. T. Masselink, N. Georgiev, T. Dekorsy, M. Helm, Appl. Phys. Lett. 85, 1478 (2004).

    Article  ADS  Google Scholar 

  18. C. Gmachl, H. M. Ng, A. Y. Cho, Appl. Phys. Lett. 77, 334 (2000).

    Article  ADS  Google Scholar 

  19. C. Gmachl, H. M. Ng, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 77, 3722 (2000).

    Article  ADS  Google Scholar 

  20. C. Gmachl, H. M. Ng, A. Y. Cho, Appl. Phys. Lett. 79, 1590 (2001).

    Article  ADS  Google Scholar 

  21. D. Hofstetter, L. Diehl, J. Faist, W. J. Schaff, J. Hwang, L. F. Eastman, C. Zellweger, Appl. Phys. Lett. 80, 2991 (2002).

    Article  ADS  Google Scholar 

  22. D. Hofstetter S. S. Schad, H. Wu, W. J. Schaff, L. F. Eastman, Appl. Phys. Lett. 83, 572 (2003).

    Article  ADS  Google Scholar 

  23. D. Hofstetter, E. Baumann, F. R. Giorgetta, M. Graf, M. Maier, F. Guillot, E. Bellet-Amalric, E. Monroy, Appl. Phys. Lett. 88, 121112 (2006).

    Article  ADS  Google Scholar 

  24. C. Becker, I. Prevot, X. Marcadet, B. Vinter, C. Sirtori, Appl. Phys. Lett. 78, 1029 (2001).

    Article  ADS  Google Scholar 

  25. R. Teissier, D. Barate, A. Vicet, D. A. Yarekha, C. Alibert, A. N. Baranov, X. Marcadet, M. Garcia, C. Sirtori, Electron. Lett. 39, 1253 (2003).

    Article  Google Scholar 

  26. R. Teissier, D. Barate, A. Vicet, C. Alibert, A. N. Baranov, X. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, J. Cockburn, Appl. Phys. Lett. 85, 167 (2004).

    Article  ADS  Google Scholar 

  27. K. Ohtani and H. Ohno, Jpn. J. Appl. Phys. Part 2, 41, L1279 (2002).

    Article  ADS  Google Scholar 

  28. K. Ohtani and H. Ohno, Appl. Phys. Lett. 82, 1003 (2003).

    Article  ADS  Google Scholar 

  29. K. Ohtani, K. Fujita, H. Ohno, Appl. Phys. Lett. 87, 211113 (2005).

    Article  ADS  Google Scholar 

  30. N. Georgiev and T. Mozume, J. Appl. Phys. 89, 1064 (2001).

    Article  ADS  Google Scholar 

  31. D. G. Revin, L. R. Wilson, E. A. Zibik, R. P. Green, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, Appl. Phys. Lett. 84, 1447 (2004).

    Article  ADS  Google Scholar 

  32. D. G. Revin, M. J. Steer, L. R. Wilson, R. J. Airey, J. W. Cockburn, E. A. Zibik, R. P. Green, Electron. Lett. 40, 874 (2004).

    Article  Google Scholar 

  33. D. G. Revin, L. R. Wilson, E. A. Zibik, R. P. Green, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, Appl. Phys. Lett. 85, 3992 (2004).

    Article  ADS  Google Scholar 

  34. Q. Yang, C. Manz, W. Bronner, K. Köhler, J. Wagner, Electron. Lett. 40, 1339 (2004).

    Article  Google Scholar 

  35. Q. Yang, C. Manz, W. Bronner, Ch. Mann, L. Kirste, K. Köhler, J. Wagner, Appl. Phys. Lett. 86, 131107 (2005).

    Article  ADS  Google Scholar 

  36. Q. Yang, C. Manz, W. Bronner, K. Köhler, J. Wagner, Appl. Phys. Lett. 88, 121127 (2006).

    Article  ADS  Google Scholar 

  37. Q. Yang, W. Bronner, C. Manz, B. Raynor, H. Menner, Ch Mann, K. Köhler, J. Wagner (to be published in Appl. Phys. Lett., 2006).

    Google Scholar 

  38. Q. Yang, C. Manz, W. Bronner, L. Kirste, K. Köhler, J. Wagner, Appl. Phys. Lett. 86, 131109 (2005).

    Article  ADS  Google Scholar 

  39. Q. Yang, W. Bronner, C. Manz, R. Moritz, Ch. Mann, G. Kaufel, K. Köhler, J. Wagner, IEEE Photon. Technol. Lett. 17, 2283 (2005).

    Article  ADS  Google Scholar 

  40. N. Georgiev and T. Mozume, Appl. Phys. Lett. 75, 2371 (1999).

    Article  ADS  Google Scholar 

  41. N. Georgiev and T. Mozume, J. Cryst. Growth 209, 247 (2000).

    Article  ADS  Google Scholar 

  42. C. Manz, Q. Yang, K. Köhler, M. Maier, L. Kirste, J. Wagner, W. Send, D. Gerthsen, J. Crystal Growth 280, 75 (2005).

    Article  ADS  Google Scholar 

  43. The X-valley position in the AlAsSb barrier has been determined by photoluminescence (unpublished result).

    Google Scholar 

  44. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  45. J. Feldmann, J. Nunnenkamp, G. Peter, E. Göbel, J. Kuhl, K. Ploog, P. Dawson, C. T. Foxon, Phys. Rev. B 42, 5809 (1990).

    Article  ADS  Google Scholar 

  46. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994).

    Article  ADS  Google Scholar 

  47. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, Appl. Phys. Lett. 68, 3680 (1996).

    Article  ADS  Google Scholar 

  48. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 61, 898 (1992).

    Article  ADS  Google Scholar 

  49. J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, M. Razeghi, Appl. Phys. Lett. 88, 041111, (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, Q., Manz, C., Bronner, W., Mann, C., Köhler, K., Wagner, J. (2008). GaInAs/AlAsSb Quantum Cascade Lasers: A New Approach towards 3-to-5 μm Semiconductor Lasers. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_17

Download citation

Publish with us

Policies and ethics