Skip to main content

Flow Analysis, Linearity, and PTIME

  • Conference paper
Static Analysis (SAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5079))

Included in the following conference series:

Abstract

Flow analysis is a ubiquitous and much-studied component of compiler technology—and its variations abound. Amongst the most well known is Shivers’ 0CFA; however, the best known algorithm for 0CFA requires time cubic in the size of the analyzed program and is unlikely to be improved. Consequently, several analyses have been designed to approximate 0CFA by trading precision for faster computation. Henglein’s simple closure analysis, for example, forfeits the notion of directionality in flows and enjoys an “almost linear” time algorithm. But in making trade-offs between precision and complexity, what has been given up and what has been gained? Where do these analyses differ and where do they coincide?

We identify a core language—the linear λ-calculus—where 0CFA, simple closure analysis, and many other known approximations or restrictions to 0CFA are rendered identical. Moreover, for this core language, analysis corresponds with (instrumented) evaluation. Because analysis faithfully captures evaluation, and because the linear λ-calculus is complete for ptime, we derive ptime-completeness results for all of these analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Proceedings of the 8th Colloquium on Automata, Languages and Programming, London, UK, pp. 114–128. Springer, Heidelberg (1981)

    Google Scholar 

  2. Sestoft, P.: Replacing function parameters by global variables. Master’s thesis, DIKU, University of Copenhagen, Denmark, Master’s thesis no. 254 (1988)

    Google Scholar 

  3. Shivers, O.: Control-Flow Analysis of Higher-Order Languages, or Taming Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report CMU-CS-91-145 (1991)

    Google Scholar 

  4. Midtgaard, J.: Control-flow analysis of functional programs. Technical Report BRICS RS-07-18, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark (2007)

    Google Scholar 

  5. Shivers, O.: Control flow analysis in Scheme. In: PLDI 1988: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and Implementation, pp. 164–174. ACM, New York (1988)

    Chapter  Google Scholar 

  6. Heintze, N., McAllester, D.: On the cubic bottleneck in subtyping and flow analysis. In: LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, Washington, DC, USA, p. 342. IEEE Computer Society, Los Alamitos (1997)

    Chapter  Google Scholar 

  7. Henglein, F.: Simple closure analysis. DIKU Semantics Report D-193 (1992)

    Google Scholar 

  8. Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order languages. ACM Trans. Program. Lang. Syst. 20(4), 845–868 (1998)

    Article  Google Scholar 

  9. Van Horn, D., Mairson, H.G.: Relating complexity and precision in control flow analysis. In: Proceedings of the 2007 ACM SIGPLAN International Conference on Functional Programming, pp. 85–96. ACM Press, New York (2007)

    Chapter  Google Scholar 

  10. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In: PLDI 1997: Proceedings of the ACM SIGPLAN 1997 conference on Programming language design and implementation, pp. 261–272. ACM, New York (1997)

    Chapter  Google Scholar 

  11. Girard, J.Y.: Linear logic: its syntax and semantics. In: Proceedings of the workshop on Advances in linear logic. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  12. Sestoft, P.: Replacing function parameters by global variables. In: FPCA 1989: Proceedings of the fourth international conference on Functional programming languages and computer architecture, pp. 39–53. ACM, New York (1989)

    Chapter  Google Scholar 

  13. Mossin, C.: Flow Analysis of Typed Higher-Order Programs. PhD thesis, DIKU, University of Copenhagen (1997)

    Google Scholar 

  14. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, New York (1999)

    MATH  Google Scholar 

  15. Ladner, R.E.: The circuit value problem is log space complete for P. SIGACT News 7(1), 18–20 (1975)

    Article  MathSciNet  Google Scholar 

  16. Mairson, H.G.: Linear lambda calculus and PTIME-completeness. Journal of Functional Programming 14(6), 623–633 (2004)

    Article  MATH  Google Scholar 

  17. Jagannathan, S., Weeks, S.: A unified treatment of flow analysis in higher-order languages. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 393–407. ACM Press, New York (1995)

    Chapter  Google Scholar 

  18. Mossin, C.: Higher-order value flow graphs. Nordic J. of Computing 5(3), 214–234 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Hankin, C., Nagarajan, R., Sampath, P.: Flow analysis: games and nets. In: The essence of computation: complexity, analysis, transformation, pp. 135–156. Springer, New York (2002)

    Google Scholar 

  20. Mossin, C.: Exact flow analysis. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 250–264. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  21. Statman, R.: The typed λ-calculus is not elementary recursive. Theor. Comput. Sci. 9, 73–81 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Henglein, F., Mairson, H.G.: The complexity of type inference for higher-order lambda calculi. In: POPL 1991: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 119–130. ACM, New York (1991)

    Chapter  Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27 (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

María Alpuente Germán Vidal

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Horn, D., Mairson, H.G. (2008). Flow Analysis, Linearity, and PTIME. In: Alpuente, M., Vidal, G. (eds) Static Analysis. SAS 2008. Lecture Notes in Computer Science, vol 5079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69166-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69166-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69163-1

  • Online ISBN: 978-3-540-69166-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics