Skip to main content

Alginate-Based Blends and Nano/Microbeads

  • Chapter
  • First Online:
Alginates: Biology and Applications

Part of the book series: Microbiology Monographs ((MICROMONO,volume 13))

Abstract

Usually alginates are the sodium or calcium salts of alginic acid. Alginic acid is extracted from certain species of brown seaweeds. Sodium alginate is water-soluble, while calcium alginate is water-insoluble. Apart from their sourcing from the renewable resources in the nature, they have the added advantages of biocompatibility, biodegradability and ability to form a gel, which makes them suitable candidates for various applications. Alginates are mainly processed as capsules, beads, fibres and blends with other natural and synthetic polymers and are widely used in various fields. Developments made in the field of alginate-based blends and beads in recent years are summarized here. The method of preparation of the micro- and nano-sized beads, blends and their important applications are discussed, focusing on their recent uses in membrane science, drug slow release, biomedicine, process technology including enzyme immobilization, and pollution control. Recent applications of the beads in stem cell research are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS (2005) Synthesis and characterization of a pyrrole-alginate conjugate and its application in a biosensor construction. Biomacromolecules 6:3313–3318

    Article  PubMed  CAS  Google Scholar 

  • Albarghouthi M, Fara DA, Saleem M, El-Thaher T, Matalka K, Badwan A (2000) Immobilization of antibodies on alginate-chitosan beads. Int J Pharm 206:23–34

    Article  PubMed  CAS  Google Scholar 

  • Almeida PF, Almeida AJ (2004) Cross-linked alginate–gelatine beads: a new matrix for controlled release of pindolol. J Control Release 97:431–439

    PubMed  Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan–alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290:45–54

    Article  PubMed  CAS  Google Scholar 

  • Arica B, Calis S, Kas HS, Sargon MF, Hincal AA (2002) 5-Fluorouracil encapsulated alginate beads for the treatment of breast cancer. Int J Pharm 242:267–269

    Article  PubMed  CAS  Google Scholar 

  • Ariyakriangkrai W, Tamura H, Tokura S, Rujiravanit R (2005) Preparation and characterization of O-CM chitosan/alginate and N-(carboxyacyl) chitosan/alginate blend fibers. Chitin Chitosan Res 11:180–181

    Google Scholar 

  • Bajpai SK, Saxena SK, Sharma S (2006) Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate-carboxymethyl guar gum blend beads. React Funct Polym 66:659–666

    Article  CAS  Google Scholar 

  • Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769–775

    Article  PubMed  CAS  Google Scholar 

  • Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  PubMed  Google Scholar 

  • Bayramoglu G, Denizli A, Bektas S, Arica MY (2002) Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd(II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72:63–76

    Article  CAS  Google Scholar 

  • Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  CAS  Google Scholar 

  • Bressler E, Pines O, Goldberg I, Braun S (2002) Conversion of fumaric acid to L-malic by sol-gel immobilized saccharomyces cerevisiae in a supported liquid membrane bioreactor. Biotechnol Prog 18:445–450

    Article  PubMed  CAS  Google Scholar 

  • Carvalho W, Canilha L, Silva SS (2008) Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioprocess Biosyst Eng 31:493–498

    Article  PubMed  CAS  Google Scholar 

  • Castro GR, Kamdar RR, Panilaitis B, Kaplan DL (2005) Triggered release of proteins from emulsan-alginate beads. J Control Release 109:149–157

    Article  PubMed  CAS  Google Scholar 

  • Caykara T, Demirci S, Eroglu MS, Guven O (2005) Poly(ethylene oxide) and its blends with sodium alginate. Polymer 46:10750–10757

    Article  CAS  Google Scholar 

  • Chen J, Yong F, Yiacoumi S (1997) Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environ Sci Technol 31:1433–1439

    Article  CAS  Google Scholar 

  • Chen L, Subirade M (2006) Alginate-whey protein granular microspheres as oral delivery vehicles for bioactive compounds. Biomaterials 27:4646–4654

    Article  PubMed  CAS  Google Scholar 

  • Choi BY, Park HJ, Hwang SJ, Park JB (2002) Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents. Int J Pharm 239:81–91

    Article  PubMed  CAS  Google Scholar 

  • Corton E, Piuri M, Battaglini F, Ruzal SM (2000) Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique. Biotechnol Prog 16:59–63

    Article  PubMed  CAS  Google Scholar 

  • DeGroot AR, Neufeld RJ (2001) Encapsulation of urease in alginate beads and protection from alpha-chymotrypsin with chitosan membranes. Enzyme Microb Technol 29:321–327

    Article  CAS  Google Scholar 

  • Del GP, Colombo P, Colombo G, Russo P, Sonvico F (2005) Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int J Pharm 302:1–9

    Article  CAS  Google Scholar 

  • Desille M, Fremond B, Mahler S, Malledant Y, Seguin P, Bouix A, Lebreton Y, Desbois J, Campion JP, Clement B (2001) Improvement of the neurological status of pigs with acute liver failure by hepatocytes immobilized in alginate gel beads inoculated in an extracorporeal bioartificial liver. Transplant Proc 33:1932–1934

    Article  PubMed  CAS  Google Scholar 

  • Donati I, Draget KI, Borgogna M, Paoletti S, Skjak-Braek G (2005) Tailor-made alginate bearing galactose moieties on mannuronic residues: selective modification achieved by a chemoenzymatic strategy. Biomacromolecules 6:88–98

    Article  PubMed  CAS  Google Scholar 

  • Donati I, Haug IJ, Scarpa T, Borgogna M, Draget KI, Skjak-Braek G, Paoletti S (2007) Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac) Biomacromolecules 8:957–962

    Article  PubMed  CAS  Google Scholar 

  • Dong YQ, Zhang L, Shen JN, Song MY, Chen HL (2006a) Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 193:202–210

    Article  CAS  Google Scholar 

  • Dong ZF, Wang Q, Du YM (2006b) Alginate/gelatin blend films and their properties for drug controlled release. J Membr Sci 280:37–44

    Article  CAS  Google Scholar 

  • Ettayebi K, Errachidi F, Jamai L, Tahri-Jouti MA, Sendide K, Ettayebi M (2003) Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol Lett 223:215–219

    Article  PubMed  CAS  Google Scholar 

  • Fadnavis NW, Sheelu G, Kumar BM, Bhalerao MU, Deshpande AA (2003) Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnol Prog 19:557–564

    Article  PubMed  CAS  Google Scholar 

  • Fan LH, Du YM, Huang RH, Wang Q, Wang XH, Zhang LN (2005) Preparation and characterization of alginate/gelatin blend fibers J Appl Polym Sci 96:1625–1629

    Article  CAS  Google Scholar 

  • Fan LH, Du YM, Zhang BZ, Yang JH, Zhou JP, Kennedy JF (2006) Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydr Polym 65:447–452

    Article  CAS  Google Scholar 

  • Fang S, Qiu Y, Mao L, Shi X, Yu D, Ding Y (2007) Differentiation of embryoid-body cells derived from embryonic stem cells into hepatocytes in alginate microbeads in vitro. Acta Pharmacol Sin 28:1924–1930

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Dhananjeyan MR, Kiwi J, Senuma Y, Hilborn J (2000) Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at biocompatible pH values. J Phys Chem B 104:5298–5301

    Article  CAS  Google Scholar 

  • Fiol N, Escudero C, Poch J, Villaescusa I (2006) Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. React Funct Polym 66:795–807

    Article  CAS  Google Scholar 

  • Fischer FG, Dorfel H (1955) The polyuronic acids of brown algae. Hoppe Seylers Z Physiol Chem 302:186–203

    PubMed  CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan. J Control Release 114:1–14

    Article  PubMed  CAS  Google Scholar 

  • George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129

    Article  PubMed  CAS  Google Scholar 

  • Gervais TR, Carta G, Gainer JL (2000) Effect of aeration during cell growth on ketone reactions by immobilized yeast. Biotechnol Prog 16:208–212

    Article  PubMed  CAS  Google Scholar 

  • Ginty PJ, Barry JJ, White LJ, Howdle SM, Shakesheff KM (2008) Controlling protein release from scaffolds using polymer blends and composites. Eur J Pharm Biopharm 68:82–89

    Article  PubMed  CAS  Google Scholar 

  • Givry S, Prevot V, Duchiron F (2008) Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World J Microbiol Biotechnol 24:745–752

    Article  CAS  Google Scholar 

  • Godlewska-Zylkiewicz B, Malejko J, Lesniewska B, Kojlo A (2008) Assessment of immobilized yeast for the separation and determination of platinum in environmental samples by flow-injection chemiluminescence and electrothermal atomic absorption spectrometry. Microchim Acta 163:327–334

    Article  CAS  Google Scholar 

  • Gonzalez-Rodriguez ML, Holgado MA, Sanchez-Lafuente C, Rabasco AM, Fini A (2002) Alginate/chitosan particulate systems for sodium diclofenac release. Int J Pharm 232:225–234

    Article  PubMed  CAS  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K-I (2004a) Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:135–140

    Article  CAS  Google Scholar 

  • Gotoh T, Matsushima K, Kikuchi K-I (2004b) Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere 55:57–64

    Article  CAS  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg- box model. FEBS Lett 32:195–198

    Article  CAS  Google Scholar 

  • Griffin DR, Yang F, Carta G, Gainer JL (1998) Asymmetric reduction of acetophenone with Calcium-alginate-entrapped baker’s yeast in organic solvents. Biotechnol Prog 14:588–593

    Article  PubMed  CAS  Google Scholar 

  • Grunder T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartil 12:559–567

    Article  Google Scholar 

  • Gu F, Amsden B, Neufeld R (2004) Sustained delivery of vascular endothelial growth factor with alginate beads. J Control Release 96:463–472

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki S, Tachibana A, Tada D, Yamauchi K, Tanabe T (2007) Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. Mater Sci Eng C 28:1250–1254

    Article  CAS  Google Scholar 

  • Hann EC, Sigmund AE, Hennessey SM, Gavagan JE, Short DR, Ben-Bassat A, Chauhan S, Fallon RD, Payne MS, DiCosimo R (2002) Optimization of an immobilized-cell bio-catalyst for production of 4-cyanopentanoic acid. Org Process Res Dev 6:492–496

    Article  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsrod, O (1967) Studies on the Sequence of uronic acid residues in alginic acid. Acta Chem Scand 21:691–704

    Article  CAS  Google Scholar 

  • Hsieh H-J, Tung K-Y, Nair GR, Chu I-M, Wu W-T (2007) Production of ascorbic acid glucoside by alginate-entrapped mycelia of Aspergillus niger. Appl Microbiol Biotechnol 77:53–60

    Article  PubMed  CAS  Google Scholar 

  • Hsu SH, Whu SW, Hsieh SC, Tsai CL, Chen DC, Tan TS (2004) Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs 28:693–703

    Article  PubMed  CAS  Google Scholar 

  • Ibanez JP, Umetsu Y (2002) Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy 64:89–99

    Article  CAS  Google Scholar 

  • Ibanez JP, Umetsu Y (2004) Uptake of trivalent chromium from aqueous solutions using protonated dry alginate beads. Hydrometallurgy 72:327–334

    Article  CAS  Google Scholar 

  • Ichinose S, Yamagata K, Sekiya I, Muneta T, Tagami M (2005) Detailed examination of cartilage formation and endochondral ossification using human mesenchymal stem cells. Clin Exp Pharmacol Physiol 32:561–570

    PubMed  CAS  Google Scholar 

  • Iizuka Y, Kato R, Shibasaki-Kitakawa N, Yonemoto T (2005) Combination of extractive solvent addition and immobilization culture for continuous production of scopoletin by tobacco cells. Biotechnol Prog 21:603–607

    Article  PubMed  CAS  Google Scholar 

  • Iskakov RM, Kikuchi A, Okano T (2002) Time-programmed pulsatile release of dextran from calciumalginate gel beads coated with carboxy-n-propylacrylamide copolymers. J Control Release 80:57–68

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki N, Yamane ST, Majima T, Kasahara Y, Minami A, Harada K, Nonaka Sachiko, Maekawa N, Tamura H, Tokura S, Shiono M, Monde K, Nishimura S-I (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: Evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5:828–833

    Article  PubMed  CAS  Google Scholar 

  • Iwata H, Simada H, Fukuma E, Ibii T, Sato H (2004) Bioartificial pancreas research in Japan. Artif Organs 28:45–52

    Article  PubMed  Google Scholar 

  • Kadokawa J, Saitou S, Shoda S (2005) Preparation of alginate-polymethacrylate hybrid material by radical polymerisation of cationic methacrylate monomer in the presence of sodium alginate. Carbohydr Polym 60:253–258

    Article  CAS  Google Scholar 

  • Kalyani S, Smitha B, Sridhar S, Krishnaiah A (2006) Blend membranes of sodium alginate and hydroxyethylcellulose for pervaporation-based enrichment of t-butyl alcohol. Carbohydr Polym 64:425–432

    Article  CAS  Google Scholar 

  • Kanti P, Srigowri K, Madhuri J, Smitha B, Sridhar S (2004) Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep Purif Technol 40:259–266

    Article  CAS  Google Scholar 

  • Katircioglu H, Aslim B, Turker AR, Atici T, Beyatli Y (2007) Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake). Bioresour Technol. doi:10.1016/j.biortech.2007.08.068

    Google Scholar 

  • Kaul P, Banerjee A, Banerjee UC (2006) Stereoselective nitrile hydrolysis by immobilized whole-cell bio-catalyst. Biomacromolecules 7:1536–1541

    Article  PubMed  CAS  Google Scholar 

  • Kenawy E-R, Sakran MA (1996) Controlled release formulations of agrochemicals from calcium alginate. Ind Eng Chem Res 35:3726–3729

    Article  CAS  Google Scholar 

  • Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26:4171–4179

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Yamada H, Fujikawa K (2001) Effects of high molecular weight hyaluronan on the distribution and movement of proteoglycan around chondrocytes cultured in alginate beads. Osteoarthritis Cartil 9:351–356

    Article  CAS  Google Scholar 

  • Kim MH, Kim JC Lee HY, Kim JD, Yang JH (2005) Release property of temperature-sensitive alginate beads containing poly (N-isopropylacrylamide). Colloids Surf B 46:57–61

    Article  CAS  Google Scholar 

  • Kim YS, Kim HW, Lee SH, Shin KS, Hur HW, Rhee YH (2007) Preparation of alginate–quaternary ammonium complex beads and evaluation of their antimicrobial activity. Int J Biol Macromol 41:36–41

    Article  PubMed  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth HC (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT Food Sci Technol 39:177–183

    Article  CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63:97–105

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51:127–133

    Article  PubMed  CAS  Google Scholar 

  • Lazaridis NK, Charalambous C (2005) Sorptive removal of trivalent and hexavalent chromium from binary aqueous solutions by composite alginate–goethite beads. Water Res 39:4385–4396

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Cha DS, Park HJ (2004) Survival of freeze-dried lactobacillus bulgaricus KFRI 673 in chitosan-coated Calcium alginate microparticles. J Agric Food Chem 52:7300–7305

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhu JB, Zheng CL, Li WGB, Zhu JB, Zheng CL, Gong W (2008) A novel system for three-pulse drug release based on “tablets in capsule” device. Int J Pharm 352:159–164

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Jin LJ, McAllister TA, Stanford K, Xu JY, Lu YN, Zhen YH, Sun YX, Xu YP (2007) Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). J Agric Food Chem 55:2911–2917

    Article  PubMed  CAS  Google Scholar 

  • Li YG, Xing JM, Xiong XC, Li WL, Gao HS, Liu HZ (2008) Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J Ind Microbiol Biotechnol 35:145–150

    Article  PubMed  CAS  Google Scholar 

  • Lin Y-B, Fugetsu B, Terui N, Tanaka S (2005) Removal of organic compounds by alginate gel beads with entrapped activated carbon. J Hazard Mater B 120:237–241

    Article  CAS  Google Scholar 

  • Llaneras M (2000) Brown algae of economic significance. In: Martin RE, Carter EP, Flick GJ, Davis LM (eds) Marine and fresh water product hand book. CRC, Boca Raton, pp 531–541

    Google Scholar 

  • Martin AR, Shonnard D, Pannuri S, Kamat S (2007) Characterization of free and immobilized (S)-aminotransferase for acetophenone production. Appl Microbiol Biotechnol 76:843–851

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GBJ, Schmid T, Thonar E (2003) Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 21:922–930

    Article  PubMed  CAS  Google Scholar 

  • Meena R, Chhatbar M, Prasad K, Siddhanta AK (2008) Development of a robust hydrogel system based on agar and sodium alginate blend. Polym Int 57:329–336

    Article  CAS  Google Scholar 

  • Mi F-L, Sung H-W, Shyu S-S (2002) Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydr Polym 48:61–72

    Article  CAS  Google Scholar 

  • Milagre HMS, Milagre CDF, Paulo J. S. Moran PJS, Santana MHA, Rodrigues JAR (2006) Asymmetric bio-reduction of ethyl 3-halo-2-oxo-4-phenylbutanoate by Saccharomyces cerevisiae immobilized in Ca-alginate beads with double gel layer. Org Process Res Dev 10:611–617

    Article  CAS  Google Scholar 

  • Millette M, Tien CL, Smoragiewicz W, Lacroix M (2007) Inhibition of Staphylococcus aureus on beef by nisin-containing modiWed alginate Wlms and beads. Food Control 18:878–884

    Article  CAS  Google Scholar 

  • Mishra P, Kar R (2003) Treatment of grapefruit juice for bitterness removal by Amberlite IR 120 and Amberlite IR 400 and alginate entrapped naringinase enzyme. J Food Sci 68:1229–1233

    Article  CAS  Google Scholar 

  • Mofidi N, Aghai-Moghadam M, Sarbolouki MN (2000) Mass preparation and characterization of alginate microspheres. Process Biochem 35:885–888

    Article  CAS  Google Scholar 

  • Morch YA, Donati I, Strand BL, Skjak-Braek G (2007) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8:2809–2814

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Garrido I, Campana O, Lubian LM, Blasco J (2005) Calcium alginate immobilized marine microalgae: Experiments on growth and short-term heavy metal accumulation. Mar Pollut Bull 51:823–829

    Article  PubMed  CAS  Google Scholar 

  • Mohammad BT, Bustard MT (2008) Fed batch bioconversion of 2-propanol by a solvent tolerant strain of Alcaligenes faecalis entrapped in Ca-alginate gel. J Ind Microbiol Biotechnol 35:677–684

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Sasaki N, Miyamoto E, Kawashima S (2000) Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm 50:221–226

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Kontani Y, Ohmae H, Kawashima S (2002) Behavior of alginate gel beads containing chitosan salt prepared with water-soluble vitamins. Eur J Pharm Biopharm 53:249–251

    Article  PubMed  CAS  Google Scholar 

  • Naganagouda K, Mulimani VH (2006) Gelatin blends with alginate: gel fibers for a-galactosidase immobilization and its application in reduction of non-digestible oligosaccharides in soymilk. Process Biochem 41:1903–1907

    Article  CAS  Google Scholar 

  • Naidu BVK, Aminabhavi TM (2005) Pervaporation separation of water/2-propanol mixtures by use of the blend membranes of sodium alginate and (hydroxyethyl) cellulose. Ind Eng Chem Res 44:7481–7489

    Article  CAS  Google Scholar 

  • Naidu BVK, Malladi S, Raju KVSN, Aminabhavi TM (2005a) Thermal, viscoelastic, solution and membrane properties of sodium alginate/hydroxyethylcellulose blends. Carbohydr Polym 61:52–60

    Article  CAS  Google Scholar 

  • Naidu BVK, Rao K.S.V, Aminabhavi TM (2005b) Pervaporation separation of water + 1,4-dioxane and water + tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose – a comparative study. J Membr Sci 260:131–141

    Article  CAS  Google Scholar 

  • Nedovic VA, Obradovic B, Ukalovic IL, Trifunovic O, Pesic R, Bugarski B (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem 37:17–22

    Article  CAS  Google Scholar 

  • Nasser A, Mingelgrin U, Gerstl Z (2008) Effect of soil moisture on the release of alachlor from alginate-based controlled-release formulations. J Agric Food Chem 56:1322–1327

    Article  PubMed  CAS  Google Scholar 

  • Niladevi KN, Prema P (2008) Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J Microbiol Biotechnol 24(7):1215–1222

    Article  CAS  Google Scholar 

  • Pandey AK, Pandey SD, Misra V (2002) Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid. Ecotoxicol Environ Saf 52:92–96

    Article  PubMed  CAS  Google Scholar 

  • Pandey AK, Pandey SD, Misra V, Devi S (2003a) Role of humic acid entrapped calcium alginate beads in removal of heavy metals. J Hazard Mater 98:177–181

    Article  CAS  Google Scholar 

  • Pandey AK., Pandey SD, Misra V, Srimal AK (2003b) Removal of chromium and reduction of toxicity to microtox system from tannery effluent by the use of calcium alginate beads containing humic acid. Chemosphere 51:329–333

    Article  CAS  Google Scholar 

  • Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Deit HL, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater B 137:1765–1772

    Article  CAS  Google Scholar 

  • Park D-H, Cha J-M, Ryu H-Won, Lee G-W, Yu E-Y, Rheea J-I, Park J-J, Kimd S-W, Lee I-W, Joe Y-I, Ryu Y-W, Hurg B-K, Park J-K, Park K (2002) Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead. Biochem Eng J 11:167–173

    Article  CAS  Google Scholar 

  • Pasparakis G, Bouropoulos N (2006) Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int J Pharm 323:34–42

    Article  PubMed  CAS  Google Scholar 

  • Peretz S, Cinteza O (2007) Removal of some nitrophenol contaminants using alginate gel beads. Colloids Surf A 319:165–172

    Article  CAS  Google Scholar 

  • Phisalaphong M, Suwanmajo T, Tammarate P (2008) Synthesis and characterization of bacterial cellulose/alginate blend membranes. J Appl Polym Sci 107:3419–3424

    Article  CAS  Google Scholar 

  • Pongjanyakul T, Puttipipatkhachorn S (2007) Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 331:61–71

    Article  PubMed  CAS  Google Scholar 

  • Pongjanyakul T, Sungthongjeen S, Puttipipatkhachorn S (2006) Modulation of drug release from glyceryl palmitostearate–alginate beads via heat treatment. Int J Pharm 319:20–28

    Article  PubMed  CAS  Google Scholar 

  • Polyak B, Geresh S, Marks RS (2004) Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5:389–396

    Article  PubMed  CAS  Google Scholar 

  • Rahman TM, Diakanov I, Selden C, Hodgson H (2005) Co-transplantation of encapsulated HepG2 and rat Sertoli cells improves outcome in a thioacetamide induced rat model of acute hepatic failure. Transplant Int 18:1001–1009

    Article  Google Scholar 

  • Ramesh Babu V, Sairam M, Hosamani KM, Aminabhavi TM (2007) Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym 69:241–250

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430

    Article  CAS  Google Scholar 

  • Rokstad AM, Donati I, Borgogna M, Oberholzer J, Strand BL, Espevik T, Skjak-Braek G (2006) Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate. Biomaterials 27:4726–4737

    Article  PubMed  CAS  Google Scholar 

  • Ross JM Sherwin AF, Poole CA (2006) In vitro culture of enzymatically isolated chondrons: a possible model for the initiation of osteoarthritis, J Anat 209:793–806

    Article  Google Scholar 

  • Rousseau I, Cerf D L, Picton L, Argillier JF, Muller G (2004) Entrapment and release of sodium polystyrene sulfonate (SPS) from calcium alginate gel beads. Eur Polym J 40:2709–2715

    Article  CAS  Google Scholar 

  • Roy I, Gupta MN (2004) Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb Technol 34:26–32

    Article  CAS  Google Scholar 

  • Roy I, Sardar M, Gupta MN (2005) Cross-linked alginate–guar gum beads as fluidized bed affinity media for purification of jacalin. Biochem Eng J 23:193–198

    Article  CAS  Google Scholar 

  • Ryu S-A, Kim CS, Kim H-J, Baek DH, Oh D-K (2003) Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor. Biotechnol Prog 19:1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K (2001) Synthesis and transport characterization of alginate/aminopropylsilicate/alginate microcapsule: application to bioartificial pancreas. Biomaterials 22:2827–2834

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K (2002) Alginate/aminopropyl-silicate/alginate membrane immunoisolatability and insulin secretion of encapsulated islets. Biotechnol Prog 18:401–403

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Kawakami K (2007) Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomater 3:495–501

    Article  PubMed  CAS  Google Scholar 

  • Sanli O, Ay N, Isiklan N (2007) Release characteristics of diclofenac sodium from poly(vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. Eur J Pharm Biopharm 65:204–214

    Article  PubMed  CAS  Google Scholar 

  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 24:2198–2206

    Article  PubMed  CAS  Google Scholar 

  • Seifert DB, Phillips JA (1997) Production of small, monodispersed alginate beads for cell immobilization. Biotechnol Prog 13:562–568

    Article  CAS  Google Scholar 

  • Shu XZ, Zhu KJ (2002) The release behavior of brilliant blue from calcium–alginate gel beads coated by chitosan: the preparation method effect. Eur J Pharm Biopharm 53:193–201

    Article  PubMed  CAS  Google Scholar 

  • Smitha B, Sridhar S, Khan AA (2005) Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur Polym J 41:1859–1866

    Article  CAS  Google Scholar 

  • Rasmussen MR, Snabe T, Pedersen LH (2003) Numerical modelling of insulin and amyloglucosidase release from swelling Ca’alginate beads J Control Release 91:395–405

    Article  PubMed  CAS  Google Scholar 

  • Solak EK, Asman G, Camurlu P, Sanli O (2008) Sorption, diffusion, and pervaporation characteristics of dimethylformamide/water mixtures using sodium alginate/polyvinyl pyrrolidone blend membranes. Vacuum 82:579–587

    Article  CAS  Google Scholar 

  • Steffan S, Bardi L, Marzon M (2005) Azo dye biodegradation by microbial cultures immobilized in alginate beads. Environ Int 31:201– 205

    Article  PubMed  CAS  Google Scholar 

  • Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array Biomaterials 26:3327–3331

    Article  PubMed  CAS  Google Scholar 

  • Sussman G (2006) Management of the wound environment with dressings and topical agents. In: Sussman C, Bates-Jensen BM (eds) Wound care: a collaborative practice manual. Lippincott Williams & Wilkins, Philadelphia, pp 250–267

    Google Scholar 

  • Tal Y, Nussinovitch A, van Rijn J (2003) Nitrate removal in aquariums by immobilized Pseudomonas. Biotechnol Prog 19:1019–1021

    Article  PubMed  CAS  Google Scholar 

  • Teerapatsakul C, Bucke C, Parra R, Keshavarz T, Chitradon L (2008) Dye decolorisation by laccase entrapped in copper alginate. World J Microbiol Biotechnol 24:1367–1374

    Article  CAS  Google Scholar 

  • Ueng WN, Yuan L-J, Lee N, Lin S-S, Chan E-C, Weng J-H (2004) In vivo study of biodegradable alginate antibiotic beads in rabbits Steve. J Orthop Res 22:592–599

    Article  PubMed  CAS  Google Scholar 

  • Um E, Lee D-S, Pyo H-B, Park J-K (2008) Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid Nanofluid 5:541–549

    Article  Google Scholar 

  • Vancov T, Jury K, Van Zwieten L (2005) Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21. J Appl Microbiol 99:767–775

    Article  PubMed  CAS  Google Scholar 

  • Veglio F, Esposito A, Reverberi AP (2002) Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy 65:43–57

    Article  CAS  Google Scholar 

  • Wang K, He Z (2002) Alginate/konjac glucomannan/chitosan beads as controlled release matrix. Int J Pharm 244:117–126

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Du YM, Hu XW, Yang JH, Fan LH, Feng T (2006) Preparation of alginate/soy protein isolate blend fibers through a novel coagulating bath. J Appl Polym Sci 101:425–431

    Article  CAS  Google Scholar 

  • Willaert R, Zegers I, Wyns L, Sleutel M (2005) Protein crystallization in hydrogel beads. Acta Crystallogr D 61:1280–1288

    Article  PubMed  CAS  Google Scholar 

  • Won K, Kima S, Kim K-J, Park HW, Moon S-J (2005) Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem 40:2149–2154

    Article  CAS  Google Scholar 

  • Wong TW, Chan LW, Kho SB, Heng PWS (2002) Design of controlled-release solid dosage forms of alginate and chitosan using microwave. J Control Release 84:99–114

    Article  PubMed  CAS  Google Scholar 

  • Wu S-Y, Lin C-N, Chang J-S, Lee K-S, Lin P-J (2002) Microbial hydrogen production with immobilized sewage sludge. Biotechnol Prog 18:921–926

    Article  PubMed  CAS  Google Scholar 

  • Xing L, Dawei C, Liping X, Rongqing Z (2003) Oral colon-specific drug delivery for bee venom peptide: development of a coated calcium alginate gel beads-entrapped liposome. J Control Release 93:293–300

    Article  PubMed  CAS  Google Scholar 

  • Xu JB, Bartley JP, Johnson RA (2003) Preparation and characterization of alginate–carrageenan hydrogel films crosslinked using a water-soluble carbodiimide (WSC). J Membr Sci 218:131–146

    Article  CAS  Google Scholar 

  • Xu SW, Jiang ZY, Lu Y, Wu H, Yuan WK, (2006) Preparation and catalytic properties of novel alginate-silica-dehydrogenase hybrid biocomposite beads. Ind Eng Chem Res 45:511–517

    Article  CAS  Google Scholar 

  • Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337

    Article  PubMed  CAS  Google Scholar 

  • Xulu PM, Filipcsei G, Zrinyi M (2000) Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels. Macromolecules 33:1716–1719

    Article  CAS  Google Scholar 

  • Yadav GD, Jadhav SR (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: trans esterification in non-aqueous medium. Microporous Mesoporous Mater 86:215–222

    Article  CAS  Google Scholar 

  • Yang G, Zhang L, Peng T, Zhong W (2000) Effects of Ca2C bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes. J Membr Sci 175:53–60

    Article  CAS  Google Scholar 

  • Zhao Y, Carvajal MT, Won Y-Y, Harris MT (2007) Preparation of calcium alginate microgel beads in an electrodispersion reactor using an internal source of calcium carbonate nanoparticles. Langmuir 23:12489–12496

    Article  PubMed  CAS  Google Scholar 

  • Zohar-Perez C, Chet I, Nussinovitch A (2004) Irregular textural features of dried alginate–filler beads. Food Hydrocolloids 18:249–258

    Article  CAS  Google Scholar 

  • Zouboulis AI, Katsoyiannis IA (2002) Arsenic removal using iron oxide loaded alginate beads. Ind Eng Chem Res 41:6149–6155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasad, K., Kadokawa, Ji. (2009). Alginate-Based Blends and Nano/Microbeads. In: Rehm, B. (eds) Alginates: Biology and Applications. Microbiology Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92679-5_8

Download citation

Publish with us

Policies and ethics