Skip to main content

Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms

  • Chapter
Advances in Machine Learning I

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

Abstract

Features are the main rule building blocks for rule learning algorithms. They can be simple tests for attribute values or complex logical terms representing available domain knowledge. In contrast to common practice in classification rule learning, we argue that the separation of feature construction and rule construction processes has a theoretical and practical justification. Explicit usage of features enables a unifying framework of both propositional and relational rule learning and we present and analyze procedures for feature construction in both types of domains. It is demonstrated that the presented procedure for constructing a set of simple features has the property that the resulting feature set enables the construction of complete and consistent rules whenever possible, and that the set does not include obviously irrelevant features. It is also shown that feature relevancy may improve the effectiveness of rule learning. It this work, we illustrate the relevancy concept in the coverage space, and show that the transformation from the attribute to the feature space enables a novel, theoretically justified way of handling unknown attribute values. The same approach enables that the estimated imprecision of continuous attributes can be taken into account, resulting in the construction of features that are robust to attribute imprecision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergadano, F., Matwin, S., Michalski, R.S., Zhang, J.: Learning two-tiered descriptions of flexible concepts: The POSEIDON system. Machine Learning 8, 5–43 (1992)

    Google Scholar 

  • Bruha, I., Franek, F.: Comparison of various routines for unknown attribute value processing: The covering paradigm. International Journal of Pattern Recognition and Artificial Intelligence 10(8), 939–955 (1996)

    Article  Google Scholar 

  • Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)

    Google Scholar 

  • Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning (ML 1995), Lake Tahoe, CA, pp. 115–123. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  • Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in decision tree generation. Machine Learning 8(2), 87–102 (1992)

    MATH  Google Scholar 

  • Flach, P., Lachiche, N.: 1BC: A first-order bayesian classifier. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 92–103. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Fürnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review 13(1), 3–54 (1999)

    Article  MATH  Google Scholar 

  • Fürnkranz, J., Flach, P.A.: ROC ’n’ rule learning – Towards a better understanding of covering algorithms. Machine Learning 58(1), 39–77 (2005)

    Article  MATH  Google Scholar 

  • Gamberger, D., Lavrač, N.: Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research 17, 501–527 (2002)

    MATH  Google Scholar 

  • Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaaseenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  • Idestam-Almquist, P.: Generalization of clauses under implication. Journal of Artificial Intelligence Research 3, 467–489 (1995)

    MATH  Google Scholar 

  • Idestam-Almquist, P.: Generalization of clauses. PhD thesis, Stockholm University, Department of Computer and Systems Sciences (1993)

    Google Scholar 

  • Kaufman, K.A., Michalski, R.S.: An adjustable rule learner for pattern discovery using the AQ methodology. Journal of Intelligent Information Systems 14, 199–216 (2000)

    Article  Google Scholar 

  • Larson, J.B., Michalski, R.S.: Inductive inference of VL decision rules. SIGART Newsletter 63, 38–44 (1977)

    Google Scholar 

  • Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood (1994)

    Google Scholar 

  • Lavrač, N., Flach, P.: An extended transformation approach to inductive logic programming. ACM Transactions on Computational Logic 2(4), 458–494 (2001)

    Article  Google Scholar 

  • Lavrač, N., Džeroski, S., Grobelnik, M.: Learning nonrecursive definitions of relations with LINUS. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 265–281. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  • Lavrač, N., Gamberger, D., Jovanoski, V.: A sudy of relevance for learning in deductive databases. Journal of Logic Programming 40(2/3), 215–249 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Matheus, C.J.: A constructive induction framework. In: Proceedings of the 6th International Workshop on Machine Learning, pp. 474–475 (1989)

    Google Scholar 

  • Mehra, P., Rendell, L., Wah, B.: Principled constructive induction. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), pp. 651–656. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  • Michalski, R.S.: On the quasi-minimal solution of the covering problem. In: Proceedings of the 5th International Symposium on Information Processing (FCIP 1969), Bled, Yugoslavia. Switching Circuits, vol. A3, pp. 125–128 (1969)

    Google Scholar 

  • Michalski, R.S.: Pattern recognition and rule-guided inference. IEEE Transactions on Pattern Analysis and Machine Intelligence 2, 349–361 (1980)

    Article  MATH  Google Scholar 

  • Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelligence 20(2), 111–162 (1983)

    Article  MathSciNet  Google Scholar 

  • Michalski, R.S.: AQVAL/1 — computer implementation of a variable-valued logic system VL1 and examples of its application to pattern recognition. In: Proceedings of the 1st International Joint Conference on Pattern Recognition, pp. 3–17 (1973a)

    Google Scholar 

  • Michalski, R.S.: Discovering classification rules using variable-valued logic system vl1. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI 1973), Stanford, CA, pp. 162–172 (1973b)

    Google Scholar 

  • Michalski, R.S., Larson, J.B.: Selection of most representative training examples and incremental generation of vl1 hypotheses: the underlying methodology and the description of programs ESEL and AQ11. Technical Report 78-867, Department of Computer Science, University of Illinois at Urbana-Champaign (1978)

    Google Scholar 

  • Michalski, R.S., Mozetič, I., Hong, J., Lavrač, N.: The multi-purpose incremental learning system AQ15 and its testing application to three medical domains. In: Proceedings of the 5th National Conference on Artificial Intelligence (AAAI 1986), Philadelphia, PA, pp. 1041–1045 (1986)

    Google Scholar 

  • Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42, 203–231 (2001)

    Article  MATH  Google Scholar 

  • Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  • Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  • Wojtusiak, J., Michalski, R.S., Kaufman, K.A., Pietrzykowski, J.: The AQ21 natural induction program for pattern discovery: Initial version and its novel features. In: Proceedings of The 18th IEEE International Conference on Tools with Artificial Intelligence, Cincinnati, OH (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lavrač, N., Fürnkranz, J., Gamberger, D. (2010). Explicit Feature Construction and Manipulation for Covering Rule Learning Algorithms. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics