Skip to main content

The 2009 Horizontal Velocity Field for South America and the Caribbean

  • Conference paper
  • First Online:
Geodesy for Planet Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 136))

Abstract

Station velocities derived from space geodetic measurements in Central and South America were processed by the finite element method using a geophysical model and by a least squares collocation approach with empirical correlation functions for computing a continuous velocity field of the South American and the Caribbean crust. Velocities of the reference frame for the Americas (SIRGAS), and of various geodynamic networks (CASA, SNAPP, CAP, SAGA, and seismic gap projects) are used as input data. In general, the results present good agreement with previous models. Moreover, there are significant improvements, particularly in areas with new data (northern and central Andes, southern Tierra del Fuego).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baez JC, de Freitas SRC, Drewes H, Dalazoana R, Luz RT (2007) Deformations control for the Chilean part of the SIRGAS 2000 frame. IAG Symposia, Springer, Berlin, vol 130, 660–664

    Google Scholar 

  • Bird P (2003) An updated digital model for plate boundaries. Geochem Geophys Geosyst 4 No. 3, p 52, doi:1010.1029/2001GC000252

    Google Scholar 

  • Brooks BA, Bevis M, Smalley R, Kendrick E, Manceda R, Lauria E, Maturana R, Araujo M (2003) Crustal motion in the southern Andes (26°–36°S): Do the Andes behave like a microplate? Geochem Geophys Geosyst GC000505

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Drewes H (1980) Precise Gravimetric Networks and Recent Gravity Changes in Western Venezuela. Dt. Geod. Komm., Reihe B, Nr. 251, München

    Google Scholar 

  • Drewes H (2009) The Actual Plate Kinematic and crustal deformation Model (APKIM2005) as basis for a non-rotating ITRF. Springer, IAG Symposia, vol 134, 95–99 doi:10.1007/978-3-642-00860-3_15

  • Drewes H, Kaniuth K, Voelksen C, Alves Costa SM, Fortes LPS (2005) Results of the SIRGAS campaign 2000 and coordinates variations with respect to the 1995 South American geocentric reference frame. IAG Symposia, Springer, Berlin, vol 128, 32–37

    Google Scholar 

  • Drewes H, Heidbach O (2005) Deformation of the South American crust estimated from finite element and collocation methods. IAG Symposia, Springer, Berlin, vol 128, 544–549

    Google Scholar 

  • Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S (2008) Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics (27) TC3011, doi:10.1029/2007TC002175

  • Heidbach O, Iaffaldano G, Bunge H-P (2008) Topography growth drives stress rotations in the central Andes: Observations and models. Geophys Res Lett (35) L08301, 6pp, doi:10.1029/2007GL032782

  • Kaniuth K, Drewes H, Tremel H, Stuber K, Kahle H-G, Geiger A, Hernandez JN, Hoyer MJ, Wildermann E (2002a). Inter-seismic, co-seismic and post-seismic deformations along the South American-Caribbean plate boundary from repeated GPS observations in the CASA project. Proceedings of the IAG Symposium “Recent crustal deformations in South America and surrounding area”, Santiago, Chile

    Google Scholar 

  • Kaniuth K, Haefele P, Sanchez L (2002b) Subsidence of the permanent GPS station Bogota. IAG Symposia, Springer, Berlin, vol 124, 56–59

    Google Scholar 

  • Kaniuth K, Mueller H, Seemueller W (2002c) Displacement of space geodetic observatory Arequipa due to recent earthquakes. Zeitschr für Verm 127:238–243

    Google Scholar 

  • Kaniuth K, Stuber K (2005) Apparent and real local movements of two co-located permanent GPS stations at Bogota, Colombia. Zeitschr für Verm 130:41–46

    Google Scholar 

  • Kendrick E, Bevis M, Smalley R, Brooks B (2001) An integrated crustal velocity field for the central Andes. Geochem Geophys Geosyst 2:2001GC000191

    Article  Google Scholar 

  • Kendrick EC, Bevis M, Smalley R (2003) The Nazca – South America Euler vector and its rate of change. J South Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Khazaradze G, Klotz J (2003) Short- and long-term effects of GPS measured crustal deformation rates along the south central Andes. J Geophys Res 108(B6):5, 15

    Article  Google Scholar 

  • Klotz J, Khazaradze G, Angermann D, Reigber C, Perdomo R, Cifuentes O (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth Planet Sci Lett 193:437–446

    Article  Google Scholar 

  • Ruegg JC, Rudloff A, Vigny C, Madariaga R, de Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet Int 175:78–85

    Article  Google Scholar 

  • Seemüller W, Seitz M, Sánchez L, Drewes H (2009) The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report No. 85, available at http://www.sirgas.org/ and this volume

  • Smalley R, Kendrick E, Bevis MG, Dalziel IWD, Taylor F, Lauria E, Barriga R, Casassa G, Olivero E, Piana E (2003) Geodetic determination of relative plate motion and crustal deformation across the Scotia-South America plate boundary in eastern Tierra del Fuego. Geochem Geophys Geosyst (4) No. 9, doi:10.1029/2002GC000446

  • Trenkamp R, Kellogg JN, Freymueller JT, Mora HP (2002) Wide margin deformation, southern Central America and northwestern South America, CASA GPS observations. J South Am Earth Sci 15:157–171

    Article  Google Scholar 

  • Trenkamp R, Mora H, Salcedo E, Kellogg JN (2004) Possible rapid strain accumulation rates near Cali, Colombia, determined from GPS measurements (1996–2003). Earth Sci Res J 8:25–33

    Google Scholar 

  • Vigny C, Rudloff A, Ruegg J-C, Madariaga R, Campos J, Alvarez M (2009) Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Phys Earth Planet Int 175:86–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Drewes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drewes, H., Heidbach, O. (2012). The 2009 Horizontal Velocity Field for South America and the Caribbean. In: Kenyon, S., Pacino, M., Marti, U. (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_81

Download citation

Publish with us

Policies and ethics