Skip to main content

Introduction

  • Chapter
  • First Online:
Analytic Methods of Sound Field Synthesis

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

Abstract

The introduction of this book reviews the history and current trends in spatial audio presentation. Starting from the invention of the telephone in the nineteenth century, the properties of Stereophony, Surround Sound, Ambisonics, and audio presentation based on head-related transfer functions are outlined. The concept of sound field synthesis with its best-known representatives Wave Field Synthesis and Near-field Compensated Higher Order Ambisonics is then introduced. The chapter ends with the problem formulation, which constitutes the basis for all subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that one does not speak of a virtual sound source in the context of Stereophony (Blauert 1997). With virtual sound sources, the source’s sound field is apparent but not the source itself. Though, the sound field created by two loudspeakers is generally very different from that of a real source. It just sounds similar.

References

  • Alexander, R. J. (2008). Michael Gerzon: Beyond psychoacoustics. Dora: Media Productions.

    Google Scholar 

  • Algazi, V. R., Duda, R. O., Thompson, D. M., & Avendano, C. (2001, October). The CIPIC HRTF database. In IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics (pp. 99–102).

    Google Scholar 

  • Bamford, J. S., & Vanderkooy, J. (1995, October). Ambisonic sound for us. In 99th Convention of the AES(p. 4138).

    Google Scholar 

  • Begault, D. R., Lee, A. S., Wenzel, E. M., & Anderson, M. R. (2000). Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. In 108th Convention of the AES.

    Google Scholar 

  • Bell, A. G. (1876). Improvement in telegraphy. US patent 174465.

    Google Scholar 

  • Berkhout, A. J., de Vries, D., & Vogel, P. (1993). Acoustic control by wave field synthesis. JASA, 93(5), 2764–2778.

    Google Scholar 

  • Bertet, S. (2009). Formats audio 3D hiérarchiques: Caractérisation objective et perceptive des systèmes ambisonics d’ordres supérieurs. PhD thesis, INSA Lyon. text in French.

    Google Scholar 

  • Blauert, J. (1997). Spatial Hearing. New York: Springer.

    Google Scholar 

  • Blauert, J., & Rabenstein, R. (2010, October). Schallfeldsynthese mit Lautsprechern I - Beschreibung und Bewertung. In ITG-Fachtagung Sprachkommunikation.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • de Brujin, W. (2004). Application of wave field synthesis in videoconferencing. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Bureau International des Poids et Mesures (2006). The international system of units (SI).

    Google Scholar 

  • Colton, D., & Kress, R. (1998). Inverse acoustic and electromagnetic scattering theory (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Daniel, J. (2001). Représentation de champs acoustiques, application á la transmission et á la reproduction de scénes sonores complexes dans un contexte multimédia (Representations of sound fields, application to the transmission and reproduction of complex sound scenes in a multimedia context). PhD thesis, Université Paris 6. text in French.

    Google Scholar 

  • Daniel, J. (2003, May). Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format. In 23rd International Conference of the AES.

    Google Scholar 

  • de Vries, D. (2009). Wave field synthesis. AES monograph. New York: AES.

    Google Scholar 

  • du Moncel, T. (1881, December). The telephone at the Paris opera. Scientific American, pp. 422–423.

    Google Scholar 

  • Dutton, G. F. (1962). The assessment of two-channel stereophonic reproduction performance in studio monitor rooms, living rooms and small theatres. JAES, 10(2), 98–105.

    MathSciNet  Google Scholar 

  • Fazi, F., & Nelson, P. (2007, September). A theoretical study of sound field reconstruction techniques. In 19th International Congress on Acoustics.

    Google Scholar 

  • Frank, M., Zotter, F., & Sontacchi, A. (2008, November). Localization experiments using different 2D ambisonics decoders. In Proceedings of the 25th Tonmeistertagung (VDT International Convention).

    Google Scholar 

  • Gabrielsson, A., & Sjgren, H. (1979). Perceived sound quality of soundreproducing systems. JASA, 65(4), 1019–1033.

    Google Scholar 

  • Gardner, W. G. (1997). 3-D Audio using loudspeakers. PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Geier, M., Spors, S., & Ahrens, J. (2008, May). The soundscape renderer: A unified spatial audio reproduction framework for arbitrary rendering methods. In 124th Convention of the AES.

    Google Scholar 

  • Geier, M., Wierstorf, H., Ahrens, J., Wechsung, I., Raake, A., & Spors, S. (2010, May). Perceptual evaluation of focused sources in wave field synthesis. In 128th Convention of the AES (p. 8069).

    Google Scholar 

  • Gerzon, M. A. (1973). Periphony: With-height sound reproduction. JAES, 21, 2–10.

    Google Scholar 

  • Gerzon, M. A. (1980, February). Practical periphony: The reproduction of full-sphere sound. In 65th Convention of the AES (p. 1571).

    Google Scholar 

  • Gerzon, M. A. (1992a, March). General metatheory of auditory localization. In 92th Convention of the AES (p. 3306).

    Google Scholar 

  • Gerzon, M. A. (1992b). Psychoacoustic decoders for multispeaker stereo and surround sound. In 93rd Convention fo the AES (p. 3406).

    Google Scholar 

  • Girod, B., Rabenstein, R., & Stenger, A. (2001). Signals and systems. New York: Wiley.

    Google Scholar 

  • Haas, W. (1951). The influence of a single echo on the audibility of speech. Acustica, 1, 49–58.

    Google Scholar 

  • Hamasaki, K., Hiyama, K., & Okumura, R. (2005, May). The 22.2 multichannel sound system and its application. In 118th Convention of the AES (p. 6406).

    Google Scholar 

  • Hammershøi, D., & Møller, H. (2002). Methods for binaural recording and reproduction. Acustica, 88(3), 303–311.

    Google Scholar 

  • Hannemann, J., & Donohue, K. D. (2008). Virtual sound source rendering using a multipole-expansion and method-of-moments approach. JAES, 56(6), 473–481.

    Google Scholar 

  • Ise, S. (1999). A principle of sound field control based on the Kirchhoff–Helmholtz integral equation and the theory of inverse systems. Acta Acustica United with Acustica, 85, 78–87.

    Google Scholar 

  • Izhaki, R. (2007). Mixing Audio—Concepts, Practices and Tools. Oxford: Focal Press.

    Google Scholar 

  • Jessel, M. (1973). Acoustique théorique - propagation et holophonie (theoretical acoustics - propagation and holophony). Paris: Masson et Cie. text in French.

    Google Scholar 

  • Jones, J. P. (2001). Optimal focusing by spatio-temporal inverse filter. II. Experiments application to focusing through absorbing and reverberating media. JASA, 110(1), 48–58.

    Google Scholar 

  • Kim, Y., Deille, O., & Nelson, P. A. (2006). Crosstalk cancellation in virtual acoustic imaging systems for multiple listeners. Journal of Sound and Vibration, 297(1–2), 251–266.

    Article  Google Scholar 

  • Kirkeby, O., & Nelson, P. A. (1993). Reproduction of plane wave sound fields. JASA, 94(5), 2992–3000.

    Google Scholar 

  • Kolundžija, M., Faller, C., & Vetterli, M. (2009, May). Sound field reconstruction: An improved approach for wave field synthesis. In 126th Convention of the AES (p. 7754).

    Google Scholar 

  • Lee, S.-R., & Sung, K.-M. (2003). Generalized encoding and decoding functions for a cylindrical ambisonic sound system. IEEE Signal Processing Letters, 10(1), 21–23.

    Article  Google Scholar 

  • Lindau, A., Hohn, T., Weinzierl, S. (2007, May). Binaural resynthesis for comparative studies of acoustical environments. In 122nd Convention of the AES (p. 7032).

    Google Scholar 

  • Nelson, P. A., & Rose, J. F. W. (2005). Errors in two-point sound reproduction. JASA, 118(1), 193–204.

    Google Scholar 

  • Neukom, M. (2007, October). Ambisonic panning. In 123th Convention of the AES.

    Google Scholar 

  • Poletti, M. A. (1996). The design of encoding functions for stereophonic and polyphonic sound systems. JAES, 44(11), 948–963.

    Google Scholar 

  • Poletti, M. A. (2005). Three-dimensional surround sound systems based on spherical harmonics. JAES, 53(11), 1004–1025.

    Google Scholar 

  • Pollow, M., & Behler, G (2009). Variable directivity for platonic sound sources based on spherical harmonics optimization. Acta Acustica United with Acustica, 6, 1082–1092.

    Article  Google Scholar 

  • Pulkki, V. (1997). Virtual sound source positioning using vector base amplitude panning. JAES, 45(6), 456–466.

    Google Scholar 

  • Pulkki, V. (2007). Spatial sound reproduction with directional audio coding. JAES, 55(6), 503–516.

    Google Scholar 

  • Rabenstein, R., & Spors, S. (2007). Multichannel sound field reproduction. In Benesty, J., Sondhi, M., & Huang, Y. (Eds.), Springer Handbook on Speech Processing and Speech Communication (pp. 1095–1114). Berlin: Springer.

    Google Scholar 

  • Rumsey, F. (2001). Spatial Audio. Oxford: Focal Press.

    Google Scholar 

  • Rumsey, F. (2002). Spatial quality evaluation for reproduced sound: Terminology, meaning, and a scene-based paradigm. JAES, 50(9), 651–666.

    Google Scholar 

  • Rumsey, F., Kassier, S., Zieliski, R., & Bech, S. (2005). On the relative importance of spatial and timbral fidelities in judgements of degraded multichannel audio quality. JASA, 118(2), 968–976.

    Google Scholar 

  • Sanson, J., Corteel, E., & Warusfel, O. (2008, May). Objective and subjective analysis of localization accuracy in wave field synthesis. In 124th Convention of the AES (p. 7361).

    Google Scholar 

  • Start, E. W. (1997). Direct sound enhancement by wave field synthesis. PhD thesis, Delft University of Technology.

    Google Scholar 

  • Steinberg, J. C., & Snow, W. B. (1934a, January). Auditory perspective—Physical factors. Electrical Engineering, 12–17.

    Google Scholar 

  • Steinberg, J. C., & Snow, W. B. (1934b). Symposium on wire transmission of symphonic music and its reproduction in auditory perspective: Physical factors. Bell Systems Technical Journal, XIII(2).

    Google Scholar 

  • The SoundScape Renderer Team (2011). The SoundScape Renderer. http://www.tu-berlin.de/?id=ssr

  • Theile, G., & Wittek, H. (2011, May). Principles in surround recordings with height. In 130th Convention of the AES.

    Google Scholar 

  • Theile, G. (1980). On the localisation in the superimposed soundfield. PhD thesis, Technische Universität Berlin.

    Google Scholar 

  • Toole, F. E. (2008). Sound reproduction: The acoustics and psychoacoustics of loudspeakers and rooms. Oxford: Focal Press.

    Google Scholar 

  • Torick, E. (1998). Highlights in the history of multichannel sound. JAES, 46(1/2), 27–31.

    Google Scholar 

  • Wallach, H., Newman, E. B., & Rosenzweig, M. R. (1949). The precedence effect in sound localization. American Journal of Psychology, 57, 315–336.

    Article  Google Scholar 

  • Ward, D. B., & Abhayapala, T. D. (2001). Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Transaction on Speech and Audio Processing, 9(6), 697–707.

    Article  Google Scholar 

  • Warusfel, O. (2011). Listen HRTF database. Retrieved Aug, 2011, from http://recherche.ircam.fr/equipes/salles/listen/.

  • Wierstorf, H., Geier, M., Raake, A., & Spors, S. (2011, May). A free database of head-related impulse response measurements in the horizontal plane with multiple distances. In 130th Convention of the AES. Data are available at http://audio.qu.tu-berlin.de/?p=641.

  • Williams, E. G. (1999). Fourier acoustics: Sound radiation and nearfield acoustic holography. London: Academic.

    Google Scholar 

  • Wittek, H. (2007). Perceptual differences between wavefield synthesis and stereophony. PhD thesis, University of Surrey.

    Google Scholar 

  • Zotter, F. (2009). Analysis and synthesis of sound-radiation with spherical arrays. Doctoral Thesis, Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz.

    Google Scholar 

  • Zotter, F., & Pomberger, H. (2010, May). Ambisonic decoding with and without mode-matching: Case study using the hemisphere. In 2nd International Symposium on Ambisonics and Spherical Acoustics.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahrens, J. (2012). Introduction. In: Analytic Methods of Sound Field Synthesis. T-Labs Series in Telecommunication Services. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25743-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25743-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25742-1

  • Online ISBN: 978-3-642-25743-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics