Skip to main content

Railway Dynamometric Wheelsets: A Comparison of Existing Solutions and a Proposal for the Reduction of Measurement Errors

  • Conference paper
Proceedings of the 1st International Workshop on High-Speed and Intercity Railways

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 148))

Abstract

Currently, the testing for the acceptance of running characteristics of railway vehicles in Europe is ruled by EN-14363 which is derived in essential parts from UIC 518. This standard is based on present state of the art which is generally applicable for test procedures and the evaluation of stationary and ‘ontrack’ tests. It defines testing scenarios, analysis conditions and experimental measurements, and proposes limiting values for a number of different parameters mainly associated with vehicle safety and ride quality. Variables to be measured are specified for each method. The method referred to as “normal”, which is applied to the cases of the highest level of criticality (high speed and/or high axle loading) requires the measurement of forces transmitted through wheel-rail contact at several wheelsets of the vehicle.

Consequently, the accurate experimental measurement of wheel-rail forces is vital both for railway vehicle acceptance processes and for fundamental research in the field of vehicle-track interaction. Wheel-rail forces are measured by so-called “dynamometric wheelsets”, i.e. wheelsets in which multiple sensors are arranged in predetermined positions.

During the last decades, several measurement methods have been proposed. When analysing the theoretical background of the different methods it can be seen that their accuracy can vary depending on several factors such as: gyroscopic effects, shape of the wheel web, position of the wheel rail contact, vehicle speed, etc.

Generally, under extreme conditions wheel/track forces tend to be very close to the limits established in the standard, such that measurement accuracy of forces transmitted through wheel-rail contact is a highly key factor. However, the standard does not propose any measurement method, or requirements for the precision of such measurements. This results in serious uncertainties in the acceptance process. This work proposes a variety of solutions that provide an improvement over existing solutions, laying the starting basis for the development of new dynamometric wheelsets that meet current requirements for accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso, A., Giménez, J.G.: Some new contributions to the resolution of the normal wheel rail contact problem. Vehicle System Dynamics 44 (2007)

    Google Scholar 

  2. Egaña, J.I., Vinolas, J., Seco, M.: Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear 261(2), 216–224

    Google Scholar 

  3. Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Vehicle System Dynamics 43, 233–244 (2005)

    Article  Google Scholar 

  4. Alonso, A., Giménez, J.G.: A new method for the solution of the normal contact problem in the dynamic simulation of railway vehicles. Vehicle System Dynamics 43, 149–160 (2005)

    Article  Google Scholar 

  5. Seco, M., Sanchez, E., Vinolas, J.: Monitoring wheel defects on a metro line: System description, analysis and results. In: Allen, J., Brebia, C.A., Rumsey, A.F., Sciutto, G., Sone, S., Goodman, C.J. (eds.) COMPUTERS IN RAILWAYS X (Computer System Design and Operation in the Railway and Other Transit Systems). WIT transactions on the Built Environment, vol. 88, pp. 973–982 (2006) ISBN: 1-84564-177-9

    Google Scholar 

  6. Egana, J.I., Vinolas, J., Gil-Negrete, N.: Effect of Liquid High Positive Friction (HPF) Modifier on Wheel-Rail Contact and Rail Corrugation. Tribology International 38(8), 769–774 (2005)

    Article  Google Scholar 

  7. Gonzalez, F., Perez, J., Vinolas, J., Alonso, A.: Use of active steering in railway bogies to reduce rail corrugation on curves. Journal of Rail and rapid Transit, Proc. IMech Part F 221, 509–519 (2007)

    Article  Google Scholar 

  8. EN-14363, Railway applications–Testing for the acceptance of running characteristics of railway vehicles – Testing of running behaviour and stationary tests (2005)

    Google Scholar 

  9. UIC 518, Testing and approval of railway vehicles from the point of view of their dynamic behaviour –Safety–Track fatigue–Running behaviour, 4th edn. (September 2009)

    Google Scholar 

  10. Wilsona, N., Friesa, R., Wittea, M., Haigermoserb, A., Jerry Evans, M., Orlova, A.: Assessment of safety against derailment using simulations and vehicle acceptance tests: a worldwide comparison of state-of-the-art assessment methods. Vehicle System Dynamics 49(7), 1021–1072 (2011)

    Article  Google Scholar 

  11. Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics 49(7), 1021–1072 (2011)

    Article  Google Scholar 

  12. Berg, H., Gößling, G., Zück, H.: Radsatzwelle un Radscheible die richtige Kombination zur Messung der Kräfte zwischen Rad und Schiene. Glasers Annalen 2, 40–47 (1996)

    Google Scholar 

  13. Breuer, W., Gaede, J.: Die Querkräfte der Hochleistungslokomotiven der Reihe 1016/1116. Glassers Annalen 126(5), 190–199 (2002)

    Google Scholar 

  14. Elkins, J.A., Cartert, A.: Testing and Analysis Techniques for Safety Assessment of Rail Vehicles: The state of the art. Vehicle System Dynamics 22 (1993)

    Google Scholar 

  15. Zeilhofer, M., Sühsmuth, G., von Piwenitzky, G.: Ermittlung der Kräfte zwischen Rad und Schiene aus der Biegedehnungen der Radsatzwelle. Glasers Annalen (12), 373–385 (1972); Glasers Annalen (7-8), 276 (1973), Lettera del Dr. Weber

    Google Scholar 

  16. Ostermeyer, M., Berg, H., Zuck, H.-H.: Der heutige Entwick-lungsstand der Messmethode Radstzwellenverfahren zur Bestimmung der Kräfte zwischen Rad und Schiene. Glasers Annalen 2, 53–61 (1978)

    Google Scholar 

  17. Benigni, E., Braghin, F., Cervell, S., Cigada, A., Resta, F.: Determinazione delle forze di contatto tra ruota e rotaia a partire da misure di deformazione dell’assile. Scienza e Tecnica 12 (2002)

    Google Scholar 

  18. Melis, M., Gimenez, G., Castañares, A., de Matias, I.: Sistema de monitorización del estado de la vía para su utilización en vehículos comerciales. Patente ES2197751 (January 2004)

    Google Scholar 

  19. ORE, Question B10, Rapport No 14, Mesure des forces agissant entre la roue et le rail (October 1973)

    Google Scholar 

  20. Romolo Corazza, G., Malavasi, G., Licciardello, R., Marcote, M.: La ruota come sensore d’interazione ruota-rotaia. Scienza e Tecnica 3 (1999)

    Google Scholar 

  21. Courtin, J., Marmoret, B.: L’évolution de la mesure des efforts d’interaction roue-rail. Revue Générale des Chemins de Fer 4, 235–242 (1986)

    Google Scholar 

  22. Otter, D.H., Higgins, R.L.: A Design for Next Generation Load Measuring Wheel Sets. In: Proceedings of Railroad Conference (1991)

    Google Scholar 

  23. Joly, R.: Essais de dynamique ferroviaire. Chemins de Fer (July 1975)

    Google Scholar 

  24. Punwani, S.K., Johnson, M.R., Joyca, R.P., Mancillas, C.: Measurement of wheel/rail forces on the high cub, high performance covered hopper car project. ASME Technical paper (1984)

    Google Scholar 

  25. Otter, D.H., Higgins, R.L., Martin, R.W.: United States Patent #5.492.002 (February 20, 1996)

    Google Scholar 

  26. Otter, D.H., Higgins, R.L., Martin, R.W.: High Accuracy Load Measuring Wheelset. In: International Wheelset Congress, Sydney, Australia (1992)

    Google Scholar 

  27. Berg, H., Zuck, H.H.: Deutsche Bundesbahn. European Patent #0580969A1 (May 7, 1993)

    Google Scholar 

  28. Ananthanarayana, N., Sinha, S.K.: Mise au point d’un essieu de mesure des forces Q et Y pour les locomotives diesels et électriques du type WDM4. Rail International (June 1989)

    Google Scholar 

  29. Popistas, A.: Essais de stabilité et de sécurité contre le déraillement de deux voitures pouvant atteindre des vitesses de 160 km/h, construites en Roumanie pour la Gréce. Rail International (September 1986)

    Google Scholar 

  30. Ischida, Fukazawa, Matsuo, Ueki, Tezuka: A New Continuous Measuring Method of Wheel-Rail Contact Forces. Quarterly Report of RTRI, 105–111 (May 1994)

    Google Scholar 

  31. Kanehara, H., Fujioka, T.: Measuring rail/wheel contact points of running railway vehicles. Wear 253, 275–283 (2002)

    Article  Google Scholar 

  32. Kanehara, H., Ohno, K.: Development of a continuous measuring system for contact position between wheel and rail toward clarification of derailment mechanism. JR EAST Technical Review (2) (Summer 2003)

    Google Scholar 

  33. Gomez, E., Giménez, J.G., Alonso, A.: Method for the reduction of measurement errors associated to the wheel rotation in railway dynamometric wheelsets. Mechanical Systems and Signal Processing (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, E., Alonso, A., Giménez, J.G., Vinolas, J. (2012). Railway Dynamometric Wheelsets: A Comparison of Existing Solutions and a Proposal for the Reduction of Measurement Errors. In: Ni, YQ., Ye, XW. (eds) Proceedings of the 1st International Workshop on High-Speed and Intercity Railways. Lecture Notes in Electrical Engineering, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27963-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27963-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27962-1

  • Online ISBN: 978-3-642-27963-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics