Skip to main content

ManyCell: A Multiscale Simulator for Cellular Systems

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7605))

Included in the following conference series:

  • 1427 Accesses

Abstract

The emergent properties of multiscale biological systems are driven by the complex interactions of their internal compositions usually organized in hierarchical scales. A common representation takes cells as the basic units which are organized in larger structures: cultures, tissues and organs. Within cells there is also a great deal of organization, both structural (organelles) and biochemical (pathways). A software environment capable of minimizing the computational cost of simulating large-scale multiscale models is required to help understand the functional behaviours of these systems. Here we present ManyCell, a multiscale simulation software environment for efficient simulation of such cellular systems. ManyCell does not only allow the integration and simulation of models from different biological scales, but also combines innovative multiscale methods with distributed computing approaches to accelerate the process of simulating large-scale multiscale agent-based models. Thereby opening up the possibilities of understanding the functional behaviour of cellular systems in an efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dada, J.O., Mendes, P.: Multi-scale modelling and simulation in systems biology. Integr. Biol. 3(2), 86–96 (2011)

    Article  Google Scholar 

  2. Pope, S.: Computation efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory Modelling 1, 41–63 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hoops, S., et al.: Copasi—a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  4. Dada, J.O., Mendes, P.: Design and Architecture of Web Services for Simulation of Biochemical Systems. In: Paton, N.W., Missier, P., Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 182–195. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  6. Le Novère, N., et al.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, 689–691 (2006)

    Article  Google Scholar 

  7. Dada, J.O., et al.: SBRML: a markup language for associating systems biology data with models. Bioinformatics 26(7), 932–938 (2010)

    Article  Google Scholar 

  8. van Engelen, R.A., Gallivany, K.A.: The gsoap toolkit for web services and peer-to-peer computing networks. In: 2nd IEEE International Symposium on Cluster Computing and the Grid, pp. 128–135 (2002)

    Google Scholar 

  9. Da-Jun, T., Tang, F., Lee, T., Sarda, D., Krishnan, A., Goryachev, A.: Parallel Computing Platform for the Agent-Based Modeling of Multicellular Biological Systems. In: Liew, K.-M., Shen, H., See, S., Cai, W. (eds.) PDCAT 2004. LNCS, vol. 3320, pp. 5–8. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Chen, K.C., et al.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell. 15(8), 3841–3862 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dada, J.O., Mendes, P. (2012). ManyCell: A Multiscale Simulator for Cellular Systems. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics