Skip to main content

TEM for Characterization of Semiconductor Nanomaterials

  • Chapter
  • First Online:
Transmission Electron Microscopy Characterization of Nanomaterials

Abstract

Transmission electron microscopy provides a wide range of methods to study the morphology, the crystal structure and perfection, the chemistry, and the magnetic and the electronic properties of the matter at the highest spatial resolution. In this chapter some TEM approaches to study nanostructured semiconductors will be described with the help of practical examples of their application to different kinds of material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbe E (1874) A contribution to the theory of the microscope and the nature of microscopic vision. Proc Bristol Nat Soc 1:200–261

    Google Scholar 

  2. Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron microscopy of thin crystals, 2nd edn. R. E. Krieger, Malabar

    Google Scholar 

  3. Herman A, Sitter H (1996) Molecular beam epitaxy: fundamental and current status. Springer series in materials science, vol 7. Springer-Verlag Berlin and Heidelberg GmbH

    Google Scholar 

  4. Scheel HJ, Capper P (2008) Crystal growth technology: from fundamentals and simulation to large scale production. Wiley-VCH, Weinheim

    Book  Google Scholar 

  5. Johnson M, Silsbee RH (1985) Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys Rev Lett 55(17):1790–1793. doi:PMID 10031924

    Article  CAS  Google Scholar 

  6. Obst M, Gasser P, Mavrocordatos D, Dittrich M (2005) TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am Mineral 90:1270–1277

    Article  CAS  Google Scholar 

  7. Spence JCH (1988) Experimental high-resolution electron microscopy, 2nd edn. Oxford University Press, New York

    Google Scholar 

  8. Stadelmann PA (1987) EMS – a software package for electron diffraction analysis and HREM image simulations in material science. Ultramicroscopy 21:131–145

    Article  CAS  Google Scholar 

  9. Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum, New York

    Book  Google Scholar 

  10. Cowley JM (1990) Diffraction physics, 4th edn. North Holland Elsevier Science, Amsterdam

    Google Scholar 

  11. Pennycook SJ, Nellist PD (1999) Impact of electron microscopy on materials research. Kluwer, Dordrecht

    Google Scholar 

  12. Pogany AP, Turner PS (1968) Reciprocity in electron diffraction and microscopy. Acta Cryst A24:103–109

    Article  Google Scholar 

  13. Voyles PM, Muller DA, Kirland EJ (2004) Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10:291–300

    Article  CAS  Google Scholar 

  14. Carlino E, Grillo V (2005) Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments. Phys Rev B 71:235303

    Article  CAS  Google Scholar 

  15. Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47:395

    Article  CAS  Google Scholar 

  16. Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78:1

    Article  CAS  Google Scholar 

  17. Rose HH (2008) Optics of high-performance electron microscopes. Sci Technol Adv Mater 9:014107–0141037

    Article  Google Scholar 

  18. Nellist PD, Chisholm MF, Dellby N, Krivanek OL, Murfitt MF, Szilagyi ZS, Lupini AR, Borisevich A, Sides WH Jr, Pennycook SJ (2004) Direct sub-Angström imaging of a crystal lattice. Science 305:1741

    Article  CAS  Google Scholar 

  19. Schramm SM, van der Molen SJ, Tromp RM (2012) Intrinsic instability of aberration-corrected electron microscopes. Phys Rev Lett 109:163901

    Article  CAS  Google Scholar 

  20. Miedema MAO, van den Bos A, Buist A (1994) Experimental design of the exit wave reconstruction from a transmission electron microscope defocus series. IEEE Trans Inst Meas 43:181–186

    Article  Google Scholar 

  21. Huang WJ, Zuo JM, Jiang B, Kwon KW, Shim M (2009) Sub-Ångström-resolution diffractive imaging of single nanocrystals. Nature Phys 5:129–133

    Article  CAS  Google Scholar 

  22. De Caro L, Carlino E, Caputo G, Cozzoli PD, Giannini C (2010) Electron diffractive imaging of oxygen atoms in nanocrystals at sub-angstrom resolution. Nature Nanotech 5:360–365

    Article  CAS  Google Scholar 

  23. De Caro L, Carlino E, Alessio Vittoria F, Siliqi D, Giannini C (2012) Keyhole electron diffractive imaging (KEDI). Acta Cryst A681-16

    Google Scholar 

  24. Williams DB, Carter CB (2009) Transmission electron microscopy: a textbook for material science, 2nd edn. Springer Science+Business Media, New York

    Book  Google Scholar 

  25. Zuo JM (2000) Detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49:245–268

    Article  CAS  Google Scholar 

  26. Reimer L (1984) Transmission electron microscopy: physics of image formation and microanalysis. Springer-Verlag Berlin Heidelberg, New York, Tokio

    Book  Google Scholar 

  27. Loretto MH (1984) Electron beam analysis of materials. Chapman and Hall, London

    Book  Google Scholar 

  28. Buxton BF, Eades JA, Steeds JW, Rackam GM (1976) Philos Trans Royal Soc Lond A 281:171

    Article  Google Scholar 

  29. Steeds JW, Vincent R (1983) J Appl Cryst 16:317

    Article  CAS  Google Scholar 

  30. Tanaka M, Saito R, Ueno K, Harada Y (1980) J Electron Microsc 29:408

    Google Scholar 

  31. Deblasi C, Mancini AM, Manno D, Rizzo A, Carlino E (1991) Convergent beam electron diffraction analysis of GaSe crystals grown from the melt by different doping elements. Il Nuovo Cimento 13D(2):233–246

    Article  CAS  Google Scholar 

  32. Armigliato A, Balboni R, Corticelli F, Frabboni S (1995) Influence of experimental parameters on the determination of tetragonal distortion in heterostructures by LACBEDMicrosc. Microanal Microstruct 6(5–6):449–456

    Article  CAS  Google Scholar 

  33. Matsuhata H, Gjonnes J (2002) Bloch wave degeneracies and critical voltage effect in CBED patterns. Microsc Microanal 8(S02):92–93

    Google Scholar 

  34. Morniroli J-P, Cherns D (1996) Analysis of grain boundary dislocations by large angle convergent beam electron diffraction. Ultramicroscopy 62:53–63

    Article  CAS  Google Scholar 

  35. Goldstein JI, Williams DB, Cliff G (1989) In: Joy DC, Romigjr AD, Goldstein JI (eds) Quantitative X-ray analysis in principles of analytical electron microscopy, 2nd edn. Plenum Press, New York

    Google Scholar 

  36. Yamamoto N (1990) Characterization of crystal defects by cathodoluminescence detection system combined with TEM. Trans Jpn Inst Met 31:659–665

    CAS  Google Scholar 

  37. Wang JN, Steeds JW, Hopkinson M (1993) Microstructure and cathodoluminescence of MBE-grown (001) InGaP/GaAs strained-layer heterostructures. Semicond Sci Technol 8:502–508

    Article  CAS  Google Scholar 

  38. Egerton RF (1989) Electron energy loss spectrometry in the electron microscope. Plenum, New York

    Google Scholar 

  39. Yamamoto Y, Tatsumiand K, Muto S (2007) Site-selective electronic structure of aluminum in oxide ceramics obtained by TEM-EELS analysis using the electron standing-wave method. Mater Trans 48(10):2590–2594

    Article  CAS  Google Scholar 

  40. Rafferty B, Brown LM (1998) Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy. Phys Rev B 58:10326

    Article  CAS  Google Scholar 

  41. Batson PE, Kavanah KL, Woodall JM, Mayer JM (1986) Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface. Phys Rev Lett 57:2719

    Article  Google Scholar 

  42. Lazar S, Botton GA, Tichelaar FD, Zandbergen HW (2003) Materials science applications of HREELS in near edge structure analysis and low-energy loss spectroscopy. Ultramicroscopy 96:535

    Article  CAS  Google Scholar 

  43. Schattschneider P, Rubino S, Hébert C, Rusz J, Kune J, Novák P, Carlino E, Fabrizioli M, Panaccione G, Rossi G (2006) Experimental proof of circular magnetic dichroism in the electron microscope. Nature 441:486–488

    Article  CAS  Google Scholar 

  44. Rusz J, Eriksson O, Novak P, Oppeneer PM (2007) Sum-rules for electron energy-loss near-edge spectra. Phys Rev B 76:060408. doi:10.1103/PhysRevB.76.060408

    Article  CAS  Google Scholar 

  45. Schattschneider P, Hèbert C, Rubino S, Stöger-Pollach M, Rusz J, Novak P (2008) Magnetic circular dichroism in EELS: towards 10 nm resolution. Ultramicroscopy 108:433–438. doi:10.1016/j.ultramic.2007.07.002

    Article  CAS  Google Scholar 

  46. Muller DA (2009) Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4):263–270

    Article  CAS  Google Scholar 

  47. Egerton RF (2007) Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107:575–586

    Article  CAS  Google Scholar 

  48. Mkhoyan KA, Kirkland EJ, Silcox J, Alldredge ES (2004) Atomic level scanning transmission electron microscopy characterization of GaN/AlN quantum wells. J Appl Phys 96(1):738–746

    Article  CAS  Google Scholar 

  49. Varela M, Gazquez J, Pennycook SJ (2012) STEM-EELS imaging of complex oxides and interfaces. MRS Bull 37(01):29–35

    Article  CAS  Google Scholar 

  50. Van Tendeloo G, Bals S, Van Aert S, Verbeeck J, Van Dyck D (2012) Advanced electron microscopy for advanced materials. Adv Mater 24:5655–5675

    Article  CAS  Google Scholar 

  51. http://cime.epfl.ch/research/jems

  52. http://totalresolution.com

  53. Cowley JM, Moodie AF (1957) The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr 10:609–619

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  55. Ciancio R, Carlino E, Rossi G, Aruta C, Scotti di Uccio U, Vittadini A, Selloni A (2012) Magnéli- like phases in epitaxial anatase TiO2 thin films. Phys Rev B 86:104110

    Article  CAS  Google Scholar 

  56. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574. doi:10.1038/nature08879

    Article  CAS  Google Scholar 

  57. Malajovich I, Berry JJ, Samarth N, Awschalom DD (2001) Persistant sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411:770

    Article  CAS  Google Scholar 

  58. Wolf SA, Awschalom D, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488

    Article  CAS  Google Scholar 

  59. Grabs P, Richter G, Fiederling R, Becker CR, Ossau W, Schmidt G, Molenkamp LW, Weigand W, Umbach E, Sedova IV, Ivanov SV (2002) Molecular-beam epitaxy of (Cd,Mn)Se on InAs, a promising material system for spintronics. Appl Phys Lett 80:3766, and references therein

    Article  CAS  Google Scholar 

  60. Schulz O, Strassburg A, Rissoni T, Rodt S, Reissmann L, Pohl UW, Bimberg D, Klude M, Hommel D, Itoh S, Nakano K, Ishibashi A (2002) Operation and catastrophic optical degradation of II–VI laser diodes at output powers larger than 1 W. Phys Stat Sol B 229:943–948, and references therein

    Article  CAS  Google Scholar 

  61. Guha S, DePuydt JM, Qiu J, Höfler GE, Haase MA, Wu BJ, Cheng H (1993) Role of stacking faults as misfit dislocation sources and nonradiative recombination centers in II‐VI heterostructures and devices. Appl Phys Lett 63:3023

    Article  CAS  Google Scholar 

  62. Hua GC, Otsuka N, Grillo DC, Fan Y, Han J, Ringle MD, Gunshor RL, Hovinen M, Nurmikko AV (1994) Microstructure study of a degraded pseudomorphic separate confinement heterostructure blue‐green laser diode. Appl Phys Lett 65:1331

    Article  CAS  Google Scholar 

  63. Kuo LH, Salamanca-Riba L, Wu BJ, Höfler BJ, DePuydt JM, Cheng H (1995) Dependence of the density and type of stacking faults on the surface treatment of the substrate and growth mode in ZnSxSe1 − x/ZnSe buffer layer/GaAs heterostructures. Appl Phys Lett 67:3298

    Article  CAS  Google Scholar 

  64. Petruzzello J, Haberern KW, Herko SP, Marshall T, Gaines JM, Guha S, U’Ren S, Haugen JM (1996) Characterization of low defect density blue-green lasers. J Cryst Growth 159:573

    Article  CAS  Google Scholar 

  65. Bonard J-M, Ganiere J-D, Heun S, Paggel JJ, Rubini S, Sorba L, Franciosi A (1997) Stacking faults in pseudomorphic ZnSe-GaAs and lattice-matched ZnSe-In0.04 Ga0.96 As layers. Phil Mag Lett 75:219

    Article  CAS  Google Scholar 

  66. Wang N, Fung KK, Sou IK (2000) Direct observation of stacking fault nucleation in the early stage of ZnSe/GaAs pseudomorphic epitaxial layer growth. Appl Phys Lett 77:2846

    Article  CAS  Google Scholar 

  67. Jackson AG (1991) Handbook of crystallography. Springer, New York

    Book  Google Scholar 

  68. Amelinckx S (1992) Kinematical and dynamical diffraction theory in electron microscopy in materials science. In: Merli PG, Vittori Antisari M (eds) World Scientific - Singapore-New Jersey-London-Hong Kong

    Google Scholar 

  69. Colli A, Carlino E, Pelucchi E, Grillo V, Franciosi A (2004) Local interface composition and native stacking fault density in ZnSe/GaAs (001) heterostructures. Jour Appl Phys 96(5):2592–2602

    Article  CAS  Google Scholar 

  70. Thomas G (1975) In: Valdre U, Ruedl E (eds) Introduction to transmission electron microscopy in electron microscopy in materials science. Commission of the European Communities, Directorate General, Luxembourg, EUR 5515e

    Google Scholar 

  71. Colli A, Pelucchi E, Franciosi A (2003) Controlling the native stacking fault density in II-VI/III-V heterostructures. Appl Phys Lett 83:81, and references therein

    Article  CAS  Google Scholar 

  72. Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111

    Article  CAS  Google Scholar 

  73. Li D, Gonsalves JM, Otsuka N, Qiu J, Kobayashi M, Gunshor RL (1990) Structure of the ZnSe/GaAs heteroepitaxial interface. Appl Phys Lett 57:449

    Article  CAS  Google Scholar 

  74. Sun Y, Scott Thompson E, Nishida T (2010) Strain effect in semiconductors: theory and applications. Springer New York Dordrecht Heidelberg, London. ISBN 978-1-4419-0551-2

    Book  Google Scholar 

  75. Spessot A, Frabboni S, Balboni R, Armigliato A (2007) Method for determination of the displacement field in patterned nanostructures by TEM/CBED analysis of split high-order Laue zone line profiles. J Microsc 226:140–155

    Article  CAS  Google Scholar 

  76. Jacob D, Androussi Y, Lefebvre A (2001) LACBED measurement of the chemical composition of a thin InxGa1-x As layer buried in a GaAs matrix. Ultramicroscopy 89:299–303

    Article  CAS  Google Scholar 

  77. Janssens KGF, Van der Biest O, Vanhellemont J, Maes HE (1997) Assessment of the quantitative characterization of localized strain by using electron diffraction contrast imaging. Ultramicroscopy 69:151–167

    Article  CAS  Google Scholar 

  78. Miller PD, Liu CP, Murray Gibson J (2000) TEM measurement of strain in coherent quantum heterostructures. Ultramicroscopy 84:225–233

    Article  CAS  Google Scholar 

  79. Hytch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 4:131–146

    Article  Google Scholar 

  80. Hytch MJ, Plamann T (2001) Imaging conditions for reliable measurement of displacement and strain in high-resolution electron microscopy. Ultramicroscopy 87:199–212

    Article  CAS  Google Scholar 

  81. Niermann T, Park JB, Lehmann M (2011) Local estimation of lattice constants in HRTEM images. Ultramicroscopy 111:1083–1092

    Article  CAS  Google Scholar 

  82. Liu CP, Preston AR, Boothroyd CB, Humphreys CJ (1999) Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images. J Microsc 194(1):171–182

    Article  CAS  Google Scholar 

  83. De Caro L, Giuffrida A, Carlino E, Tapfer L (1997) Effect of the elastic stress relaxation on the hrtem image contrast of strained heterostructures. Acta Cryst A 53:168

    Article  Google Scholar 

  84. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  85. Ojo W, Xu S, Delpech F, Nayral C, Chaudret B (2012) Room-temperature synthesis of air-stable and size-tunable luminescent ZnS-coated Cd3P2 nanocrystals with high quantum yields. Angew Chem Int Ed 51:738–741

    Article  CAS  Google Scholar 

  86. KantaHaldar K, Sinha G, Lahtinen J, Patra A (2012) Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Appl Mater Interfaces 4:6266–6272

    Article  CAS  Google Scholar 

  87. Kim I, Haverinen HM, Wang Z, Madakuni S, Kim Y, Li J, Jabbour GE (2009) Efficient organic solar cells based on planar metallophthalocyanines. Chem Mater 21:4256–4260

    Article  CAS  Google Scholar 

  88. Mirkovic T, Rossouw D, Botton GA, Gregory D (2011) Scholes broken band alignment in EuS-CdS nanoheterostructures. Chem Mater 23:181–187

    Article  CAS  Google Scholar 

  89. Taraci JL, Hytch MJ, Clement T, Peralta P, McCartney MR, Drucker J, Picraux ST (2005) Strain mapping in nanowires. Nanotechnology 16:2365–2371

    Article  CAS  Google Scholar 

  90. Buonsanti R, Grillo V, Carlino E, Giannini C, Gozzo F, Garcia-Hernandez M, Garcia MA, Cingolani R, Cozzoli PD (2010) Architectural control of seeded grown iron oxide/TiO2 nanorod heterostructures: the role of seeds in topology selection. J Am Chem Soc 132(7):2437–2464

    Article  CAS  Google Scholar 

  91. Hu GB, Peng L-M, Yu QF, Lu HQ (2000) Automated identification of symmetry in CBED patterns: a genetic approach. Ultramicroscopy 84:47–56

    Article  CAS  Google Scholar 

  92. Tanaka M, Saito R, Sekii H (1983) Point-group determination by convergent-beam electron diffraction. Acta Cryst A 39:357

    Article  Google Scholar 

  93. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102

    Article  CAS  Google Scholar 

  94. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    Article  CAS  Google Scholar 

  95. Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3(7):961–963

    Article  CAS  Google Scholar 

  96. Cui Y, Banin U, Bjork MT, Alivisatos AP (2005) Electrical transport through a single nanoscale semiconductor branch point. Nano Lett 5(7):1519–1523

    Article  CAS  Google Scholar 

  97. Carbone L, Kudera S, Carlino E, Parak WJ, Cingolani R, Manna L (2006) Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J Am Chem Soc 128(3):748–755

    Article  CAS  Google Scholar 

  98. Yan YF, Al-Jassim MM, Chisholm MF, Boatner LA, Pennycook SJ, Oxley M (2005) [1100]/[1102] twin boundaries in wurtzite ZnO and group-III-nitrides. Phys ReV B 71(4):041309

    Article  CAS  Google Scholar 

  99. Hawkes PW (2009) Aberration correction past and present. Phil Trans R Soc A 28 367(1903):3637–3664

    Article  CAS  Google Scholar 

  100. Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Muller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Schmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008) Atomic structure of core-shell precipitates in Al-Li-Sc-Zr alloys studied by analytical and aberration-corrected TEM/STEM. Microsc Microan 14:469

    Article  CAS  Google Scholar 

  101. Meyer JC, Kisielowski C, Erni R, Rossel MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582

    Article  CAS  Google Scholar 

  102. Gabor D (1948) A new microscopic principle. Nature 161:777

    Article  CAS  Google Scholar 

  103. Fan H, Zhong ZZ, Zheng C, Li F (1985) Image processing in high-resolution electron microscopy using direct method. Acta Crystallogr A41:163–165

    Article  CAS  Google Scholar 

  104. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769

    Article  CAS  Google Scholar 

  105. Fienup JR (1987) Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J Opt Soc Am A4:118–127

    Article  Google Scholar 

  106. Abbey B, Nugent KA, Williams GJ, Clark JN, Peele AG, Pfeifer MA, De Jonge M, McNulty I (2008) Keyhole coherent diffractive imaging. Nature 4:394–398

    CAS  Google Scholar 

  107. Shannon (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):1021

    Google Scholar 

  108. Sayre D (1952) Some implications of a theorem due to Shannon. Acta Cryst 5:843

    Article  Google Scholar 

  109. Muller DA, Silcox J (1995) Delocalization in inelastic scattering. Ultramicroscopy 59:195–213

    Article  CAS  Google Scholar 

  110. Howie A (1979) Image-contrast and localized signal selection technique. J Microsc Oxford 117:11–23

    Article  Google Scholar 

  111. Bourdillon AJ, Self PG, Stobbs WM (1981) Crystallographic orientation effects in energy dispersive X-ray analysis. Philos Mag A 44:1335–1350

    Article  CAS  Google Scholar 

  112. Kohl H, Rose H (1985) Theory of image formation by inelastically scattered electrons in the electron microscope. Adv Electron Electron Phys 65:173

    Article  CAS  Google Scholar 

  113. Messiah A (1999) Quantum mechanics. Dover, North-Holland Publishing Company, Amsterdam

    Google Scholar 

  114. Lupini AR, Pennycook SJ (2003) Localization in elastic and inelastic scattering. Ultramicroscopy 96:313–322

    Article  CAS  Google Scholar 

  115. Pennycook SJ (2002) Structure determination through Z-contrast microscopy. Adv Imaging Electron Phys 123:173–206, P. G. Merli, G. Calestani, and M. Vittori-Antisari, Eds

    Article  CAS  Google Scholar 

  116. Stöhr J, Wu Y, Dunham D, Tonner BP (1993) Element-specific magnetic microscopy with circularly polarized X-rays. Science 259:658–661

    Google Scholar 

  117. Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70(5):694–697

    Article  CAS  Google Scholar 

  118. Schattschneider P, Ennena I, Stoger-Pollach M, Verbeeck J, Mauchamp V, Jaouen M (2010) Real space maps of magnetic moments on the atomic scale: theory and feasibility. Ultramicroscopy 110:1038–1041

    Article  CAS  Google Scholar 

  119. Lidbaum H, Rusz J, Rubino S, Liebig A, Hjorvarsson B, Oppeneer PM, Eriksson O, Leifer K (2010) Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 110:1380–1389

    Article  CAS  Google Scholar 

  120. Verbeeck J, Tian H, Schattschneider P (2010) Production and application of electron vortex beams. Nature 467:301–303

    Article  CAS  Google Scholar 

  121. http://l-esperimento-piu-bello-della-fisica.bo.imm.cnr.it/english/index.html

  122. http://www.ccmr.cornell.edu/igert/modular/docs/4_Chemical_Identification_at_Nanoscale.pdf

  123. Krivanek OL, Dellby N. Murfitt MF (2011) Aberration-corrected scanning transmission electron microscopy of semiconductors. J Phys: Conf Ser 326:012005. Seventeenth international conference on microscopy of semiconducting materials, 2011. IOP Publishing. doi:10.1088/1742-6596/326/1/012005

    Google Scholar 

Download references

Acknowledgments

I would like to thank Alfonso Franciosi for the many inspiring discussions, Regina Ciancio for the careful reading of the paper and Ezio Cociancich for the help in the realization of some of the figures of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Carlino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carlino, E. (2014). TEM for Characterization of Semiconductor Nanomaterials. In: Kumar, C. (eds) Transmission Electron Microscopy Characterization of Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38934-4_3

Download citation

Publish with us

Policies and ethics