Skip to main content

Mineralogical and Geochemical Controls in Biomining and Bioremediation

  • Chapter
  • First Online:
Geomicrobiology and Biogeochemistry

Part of the book series: Soil Biology ((SOILBIOL,volume 39))

Abstract

The efficiency of biomining and bioremediation operations is dependent on mineralogy and geochemistry of the system, i.e., the substrate, which defines the conditions in which a certain microbial community can develop and catalyze the biogeochemical processes, thus increases the kinetics of the reactions, the main objective in a biomining operation. However, many of the so-called biomining and bioremediation operations lack a thorough mineralogical, geochemical, and microbial community characterization during the process operations. Thus, many of these biomining operations become mainly acid leach operations with low recoveries and do not take advantage the enormous potential for bioleaching process improvements. Similarly in bioremediation, the mineralogy and the potential changes of the geochemical system due to microbial interaction controls the stability and mobility of certain potential environmental pollutants. Thus, in biomining and bioremediation areas a thorough knowledge of the mineralogy and geochemistry is required for the effective operation of these systems. The key process parameters that affect process efficiency and reaction kinetics and strategies for process improvement are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral 83:1551–1563

    Google Scholar 

  • Benner SG, Gould WD, Blowes DW (2000) Microbial populations associated with the generation and treatment of acid mine drainage. Chem Geol 169:435–448

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55:965–978

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ, Benner SG, McRae CWT, Bennett TA, Puls RW (2000) Treatment of inorganic contaminants using permeable reactive barriers. J Contam Hydrol 45:123–137

    Article  Google Scholar 

  • Bryner LC, Walker RB, Palmer R (1967) Some factors influencing the biological and non-biological oxidation of sulfide minerals. Trans Soc Mining Eng AIME 238:56–65

    Google Scholar 

  • Carson CD, Fanning DS, Dixon JB (1982) Alfisols and ultisols with acid sulfate weathering features in Texas. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfide weathering, vol 10. Soil Science Society of America Publicaiton, Madison, WI, pp 127–146

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides. Wiley-VCH, Weinheim, 664 p

    Book  Google Scholar 

  • Demergasso CS, Galleguillos PA, Escudero G, Zepeda A, Castillo D, Casamayor EO (2005) Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy 80:241–253

    Article  Google Scholar 

  • Diaby N (2008) Biogeochemical evolution of a marine shore tailings deposit during bioremediation. University of Lausanne, Lausanne

    Google Scholar 

  • Dold B (2006) Geochemical modeling of the exotic copper mineralization at the Exotica deposit, Chuquicamata, Chile. In: XI Congreso Geologico Chileno, vol 2, Antofagasta, Chile, pp 274–250

    Google Scholar 

  • Dold B (2008) Sustainability in metal mining: from exploration, over processing to mine waste management. Rev Environ Sci Biotechnol 7:275–285

    Article  Google Scholar 

  • Dold B (2010) Basic concepts in environmental geochemistry of sulfide mine-waste management. In: Kumar S (ed) Waste management. Intech Open Access, Rijeka, pp 173–198 (http://www.intechopen.com/books/show/title/waste-management)

    Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55

    Article  Google Scholar 

  • Dold B, Wade C, Fontbote L (2009) Water management for acid mine drainage control at the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit of Cerro de Pasco, Peru. J Geochem Explor 100:133–141

    Article  Google Scholar 

  • Dold B, Diaby N, Spangenberg JE (2011a) Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Environ Sci Technol 45:4876–4883

    Article  Google Scholar 

  • Dold B, Weibel L, Cruz J (2011b) New modified humidity cells test for acid rock drainage prediction in porphyry copper deposits. EnviroMine, Santiago de Chile

    Google Scholar 

  • Dold B, Gonzalez-Toril E, Aguilera A, Lopez-Pamo E, Bucchi F, Cisternas M-E, Amils R (2013) Acid rock drainage and rock weathering in Antarctica – important sources for iron cycling in the Southern Ocean. Environ Sci Technol 47(12):6129–6136

    Google Scholar 

  • Domic EM (2007) A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 81–96

    Chapter  Google Scholar 

  • Donati ER, Sand W (2007) Microbial processing of metal sulfides. Springer, Dordrecht, 314 p

    Book  Google Scholar 

  • du Plessis CA, Batty JD, Dew DW (2007) Commercial applications of thermophile bioleaching. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Heidelberg, pp 57–80

    Chapter  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology. Dekker, New York, 719 p

    Google Scholar 

  • Evangelou VP (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecol Eng 17:165–178

    Article  Google Scholar 

  • Evangelou VP, Zhang YL (1995) A review; pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Environ Sci Technol 25:141–199

    Article  Google Scholar 

  • Fauville A, Mayer B, Frommichen R, Friese K, Veizer J (2004) Chemical and isotopic evidence for accelerated bacterial sulphate reduction in acid mining lakes after addition of organic carbon: laboratory batch experiments. Chem Geol 204:325–344

    Article  Google Scholar 

  • Geller W, Klapper H, Salomons WE (1998) Acidic mining lakes: acid mine drainage, limnology and reclamation. Springer, Berlin

    Book  Google Scholar 

  • Graupner T, Kassahun A, Rammlmair D, Meima JA, Kock D, Furche M, Fiege A, Schippers A, Melcher F (2007) Formation of sequences of cemented layers and hardpans within sulfide-bearing mine tailings (mine district Freiberg, Germany). Appl Geochem 22:2486–2508

    Article  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453

    Article  Google Scholar 

  • Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66

    Article  Google Scholar 

  • Hallberg KB, Grail BM, du Plessis CA, Johnson DB (2011) Reductive dissolution of ferric iron minerals: a new approach for bio-processing nickel laterites. Miner Eng 24:620–624

    Article  Google Scholar 

  • Hedrich S, Lunsdorf H, Kleeberg R, Heide G, Seifert J, Schlomann M (2011) Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of ferrovum myxofaciens. Environ Sci Technol 45:7685–7692

    Article  Google Scholar 

  • Huminicki DMC, Rimstidt JD (2009) Iron oxyhydroxide coating of pyrite for acid mine drainage control. Appl Geochem 24:1626–1634

    Article  Google Scholar 

  • Jenk U, Meyer J, Paul M (2009) Flooding of Wismut’s uranium mines after closure – key findings and unexpected effects. In: Securing the future and 8th ICARD, Skelleftea, Schweden

    Google Scholar 

  • Johnson DB (2002) Acid mine drainage: bioremediation, the candidate process. In: Eccles HE (ed) Bioremediation. Taylor and Francis, London

    Google Scholar 

  • Johnson DB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2002) Pitfalls of passive mine water treatment. Rev Environ Sci Biotechnol 1:335–343

    Article  Google Scholar 

  • Johnson DB, McGinness S, Ghauri MA (1993) Biogeochemical cycling of iron and sulfur in leaching environments. FEMS Microbiol Rev 11:63–70

    Article  Google Scholar 

  • Kalin M (2001) Biogeochemical and ecological considerations in designing wetland treatment systems in post-mining landscapes. Waste Manag 21:191–196

    Article  Google Scholar 

  • Kamradt A, Borg G, Schaefer J, Kruse S, Fiedler M, Romm P, Schippers A, Gorny R, Du Bois M, Bieligk C, Liebetrau N, Nell S, Friedrich B, Morgenroth H, Wotruba H, Merkel C (2012) An integrated process for innovative extraction of metals from Kupferschiefer mine dumps, Germany. Chem Ing Tech 84:1694–1703

    Article  Google Scholar 

  • Klapper H, Friese K, Scharf B, Schimmele M, Schultze M (1998) Ways of controlling acid by ecotechnology. In: Geller W, Klapper H, Salomons W (eds) Acidic mining lakes – acid mine drainage, limnology and reclamation. Springer, Berlin, pp 401–416

    Google Scholar 

  • Knoller K, Fauville A, Mayer B, Strauch G, Friese K, Veizer J (2004) Sulfur cycling in an acid mining lake and its vicinity in Lusatia, Germany. Chem Geol 204:303–323

    Article  Google Scholar 

  • Majzlan J, Navrotsky A, Schwertmann U (2004) Thermodynamics of iron oxides: part III. Enthalpies of formation and stability of ferrihydrite (Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8), and [epsiv]-Fe2O3 1. Geochim Cosmochim Acta 68:1049–1059

    Article  Google Scholar 

  • Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571

    Article  Google Scholar 

  • Nordstrom DK (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. Int Geol Rev 42:499–515

    Article  Google Scholar 

  • Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology, vol 35, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 361–390

    Google Scholar 

  • Nordstrom DK, Jenne EA, Ball JW (1979) Redox equilibria of iron in acid mine waters. In: Jenne EA (ed) Chemical modeling in aqueous systems, vol 93, ACS symposium series. American Chemical Society, Washington, DC, pp 51–79

    Chapter  Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of ore deposits. Part A: Processes, techniques, and health issues, vol 6A, Reviews in economic geology. Society of Economic Geologists, Littleton, CO, pp 71–116

    Google Scholar 

  • Rammlmair D, Grissemann C, Furche M, Noell U, Graupner T, Meima JA, Romero-Baena A (2008) Evidence of reduced water infiltration by microhardpans – electrical resistivity measurements at Pena de Hierro, Rio Tinto, Spain. In: Proceedings of the 9th international congress for applied mineralogy, ICAM 2009, the Australasian Institute of Mining and Metallurgy, Publication Series (8/2008), Brisbane, Australia, pp 349–356

    Google Scholar 

  • Rawlings DE, Johnson DB (2007) Biomining. Springer, Berlin, 314 p

    Book  Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    Article  Google Scholar 

  • Rimstidt JD, Chermak JA, Gagen PM (1994) Rates of reaction of galena, spalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation, vol 550, ACS symposium series. American Chemical Society, Washington, DC, pp 2–13

    Chapter  Google Scholar 

  • Ritchie AIM (1994) Sulfide oxidation mechanisms: controls and rates of oxygen transport. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine-waste, vol 22. Mineralogical Association of Canada, Nepean, pp 201–244

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    Article  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2012) Phytoremediation of metal contaminated mining sites. Int J Earth Sci Eng 5:428–436

    Google Scholar 

  • Singer PC, Stumm W (1970) Acid mine drainage: the rate-determining step. Science 167:1121–1123

    Article  Google Scholar 

  • Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92:97–110

    Article  Google Scholar 

  • Weibel L, Dold B, Cruz J (2011) Application and limitation of standard humidity cell tests at the Andina porphyry copper mine, CODELCO, Chile. In: SGA biennial meeting, Antofagasta, Chile

    Google Scholar 

  • Zepeda V, Galleguillos F, Castillo D, Lastra M, Demergasso C (2007) Bacterial activity at low temperature in cultures derived from a low-grade copper sulphide bioleaching heap at the Escondida Mine, Chile. Adv Mater Res 20–21:543–546

    Article  Google Scholar 

  • Zepeda V, Galleguillos F, Urtuvia V, Molina J, Demergasso C (2009) Comparison between the bacterial populations from solutions and minerals in 1m test columns and the industrial low grade copper sulphide bioleaching process in the Escondida Mine, Chile. Adv Mater Res 71–73:63–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Dold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dold, B. (2014). Mineralogical and Geochemical Controls in Biomining and Bioremediation. In: Parmar, N., Singh, A. (eds) Geomicrobiology and Biogeochemistry. Soil Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41837-2_7

Download citation

Publish with us

Policies and ethics