Skip to main content

Simulation Study of Solidification Processes for a Large Scale System of Liquid Metal Al

  • Conference paper
Parallel Computational Fluid Dynamics (ParCFD 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 405))

Included in the following conference series:

  • 3487 Accesses

Abstract

In this work, for the simulation study of solidification processes by molecular dynamics method for a large-sized system consisting of 5,000,000 Al atoms, a parallel arithmetic program has been proposed. The parallel architecture used in the simulation is MPI+OpenMP model. It enlarges the scale of the simulation system and improves the calculation efficiency. Most importantly, because of remarkably decreasing of boundary conditions effect, the simulation result would be more closed to the real situation of the system with the increasing number of atoms involved in the simulation. In this paper, we adopt many microstructure analysis methods to verify the validity of the simulation, including pair distribution function, bond-type index analysis, atomic clusters analysis and visualizing analysis. From these results, it is clear that the simulation results are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys., 1208–1209 (1957)

    Google Scholar 

  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1989)

    Google Scholar 

  3. Deng, Y.F., Ronald, F.P., et al.: An Adaptive Load Balancing Method for Parallel Molecular Dynamics Simulations. Journal of Computational Physics 250–263 (2000)

    Google Scholar 

  4. Murty, R., Okunbor, D.: Efficient parallel algorithms for molecular dynamics simulations. In: Parallel Computing, pp. 217–230 (1999)

    Google Scholar 

  5. Taylora, V.E., Stevensb, R.L., et al.: Parallel molecular dynamics: Implications for massively parallel machines. In: Parallel Distrib. Computer, pp. 166–175 (1997)

    Google Scholar 

  6. Plimpton, S.J., Pollock, R., et al.: Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations. In: The Eighth SIAM Conference on Parallel Processing for Scientific Computing (1997)

    Google Scholar 

  7. Plimpton, J., Hendrickson, B.A.: A New Parallel Method for Molecular-Dynamics Simulation of Macromolecular Systems. S. J Comp. Chem., 326–337 (1996)

    Google Scholar 

  8. Plimpton, S.J., Hendrickson, B.A.: Parallel Molecular Dynamics Algorithms for Simulation of Molecular Systems. In: Parallel Computing in Computational Chemistry, pp. 114–132 (1995)

    Google Scholar 

  9. Plimpton, S.J.: Computational Limits of Classical Molecular-Dynamics Simulations. In: Computational Materials Science, pp. 361–364 (1995)

    Google Scholar 

  10. Liu, R.S., Qi, D.W., et al.: Subqeaks of Structure Factors for Rapidly Quenched Metals. Physics Review B, 451–453 (1992)

    Google Scholar 

  11. Liu, R.S., Qi, D.W., et al.: Anomalies in the Structure Factor for Some Rapidly Quenched Metals. Physics Review B, 12001–12003 (1992)

    Google Scholar 

  12. Liu, R.S., Dong, K.J., et al.: Formation and description of nano-clusters formed during rapid solidification processes in liquid metals. Journal of Non-Crystalline Solids, 612–617 (2005)

    Google Scholar 

  13. Liu, R.S., Dong, K.J., et al.: Formation and magic number characteristics of clusters formed during solidification processes. J. Phys: Condens. Matter, 196–103 (2007)

    Google Scholar 

  14. Hou, Z.Y., Liu, R.S., et al.: Simulation study on the formation and evolution properties of nano-clusters in rapid solidification structures of sodium. Modelling Simul. Mater. Sci. Eng., 911–922 (2007)

    Google Scholar 

  15. Hou, Z.Y., Liu, L.X., et al.: Short-range and medium-range order in Ca_7Mg_3 metallic glass. Journal of Applied Physics, 083511 (2010)

    Google Scholar 

  16. Dong, K.J., Liu, R.S., et al.: Parallel algorithm of solidification process simulation for large-sized system of liquid metal atoms. Trans. Nonferrous Met. Soc. China, 0824-06 (2003)

    Google Scholar 

  17. Brown, W.M., Wang, P.: Implementing Molecular Dynamics on Hybrid High Performance Computers-Short Range Forces. Computer Physics Communications, 898–911 (2011)

    Google Scholar 

  18. Khan, M.A., Herbordt, M.C.: Parallel discrete molecular dynamics simulation with speculation and in-order commitment. Journal of Computational Physics. 6563–6582 (2011)

    Google Scholar 

  19. Liu, Y.L., Hu, C.J., et al.: Efficient parallel implementation of Ewald summation in molecular dynamics simulations on multi-core platforms. Computer Physics Communications, 1111–1119 (2011)

    Google Scholar 

  20. Li, J.H., Zhou, Z.W., et al.: Parallel algorithms for molecular dynamics with induction forces. Computer Physics Communications, 384–392 (2008)

    Google Scholar 

  21. Mukherjee, R.M., Crozier, P.S., et al.: Substructured molecular dynamics using multibody dynamics algorithms. Intl. J. of Non-Linear Mechanics, 1045–1055 (2008)

    Google Scholar 

  22. Parks, M.L., Lehoucq, R.B., et al.: Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 777–783 (2008)

    Google Scholar 

  23. Oh, K.J., Klein, M.L.A.: A parallel molecular dynamics simulation scheme for a molecular system with bond constraints in NPT ensemble. Computer Physics Communications, 263–269 (2006)

    Google Scholar 

  24. Wang, S., Lai, S.K.: Structure and electrical resistivity’s of liquid binary alloys. J. Phys. F, 2717–2737 (1980)

    Google Scholar 

  25. Li, D.H., Li, X.R., et al.: Variational calculation of Helmholtz free energies with applications to the sp-type liquid metals. J. Phys. F, 309–321 (1986)

    Google Scholar 

  26. Verlet, L.: Computer experiments on classical fluids. Phys. Rev., 98–103 (1967)

    Google Scholar 

  27. Waseda, Y.: The structure of Non-crystalline Materials. McGraw-Hill, New York (1980)

    Google Scholar 

  28. Honeycutt, J.D., Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem., 4950–4963 (1987)

    Google Scholar 

  29. Hirata, A., Guan, P.F., et al.: Direct observation of local atomic order in a metallic glass. Nature Materials, pp. 28–33 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, Y., Li, K., Liu, R. (2014). Simulation Study of Solidification Processes for a Large Scale System of Liquid Metal Al . In: Li, K., Xiao, Z., Wang, Y., Du, J., Li, K. (eds) Parallel Computational Fluid Dynamics. ParCFD 2013. Communications in Computer and Information Science, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53962-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53962-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53961-9

  • Online ISBN: 978-3-642-53962-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics