Skip to main content

Rough Stability of Solutions to Nonconvex Optimization Problems

  • Chapter
Optimization, Dynamics, and Economic Analysis

Summary

The optimal solution set M(t) to some parametric optimization problem

$$\begin{array}{*{20}{c}} {minimize f(t,x)} & {subject to x \in D(t)} \\ \end{array}$$

is said to be roughly stable w.r.t. the roughness degree r > 0 at \( \bar t \in T\) if for all > 0 there is a neighborhood \( V\left( {\bar t} \right) \subset T\) of \( \bar t\) such that \( \left( {{ \cup _{t \in V\left( {\bar t} \right)}}M\left( t \right)} \right) < r + \in \) diam This paper states some sufficient conditions for this kind of generalized stability. One of the most important assumptions is that f is strictly roughly convexlike w.r.t. the roughness degree r. The result is applied to some optimal control problems, in particular, to a shipping problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K. (1982): Non-Linear Parametric Optimization. Akademie-Verlag, Berlin

    Book  Google Scholar 

  2. Brosowski, B. (1976): Zur stetigen Abhängigkeit der Menge der Minimalpunkte bei gewissen Minimierungsaufgaben. Lecture Notes in Mathematics, vol. 556, 63–72, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  3. Dantzig, G. B., Folkman, J., Shapiro, N. (1967): On the Continuity of the Minimum Set of a Continuous Function. Journal of Mathematical Analysis and Applications 17, 519–548

    Article  Google Scholar 

  4. Evans, J. P., Gould, F. J. (1970): Stability in Nonlinear Programming. Operations Research 18, 107–118

    Article  Google Scholar 

  5. Greenberg, H. J., Pierskalla, W. P. (1975): Stability Theorems for Infinitely Constrained Mathematical Program. Journal of Optimization Theory and Applications 16, 409–428

    Article  Google Scholar 

  6. Klatte, D. (1994): On Quantitative Stability for Non-Isolated Minima. Control and Cybernetics, 24, 183–200

    Google Scholar 

  7. Kummer, B. (1977): Global Stability of Optimization Problems. Optimization 8, 367–383

    Google Scholar 

  8. Malanowski, K. (1987): Stability of Solutions to Convex Problems of Optimization. Lecture Notes in Control and Information Sciences, vol. 93, Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  9. Robinson, S. M. (1975): Stability Theory for System of Inequalities. SIAM Journal on Numerical Analysis 12, 754–769

    Article  Google Scholar 

  10. Phu, H.X. (1984): Zur Stetigkeit der Lösung der adjungierten Gleichung bei Aufgaben der optimalen Steuerung mit Zustandsbeschränkungen. Zeitschrift für Analysis und ihre Anwendungen 3, 527–539

    Google Scholar 

  11. Pickenhain, S., Tammer, K. (1991): Sufficient Conditions for Local Optimality in Multidimensional Control Problems with State Restrictions. Zeitschrift für Analysis und ihre Anwendungen 10, 397–405

    Google Scholar 

  12. Phu, H. X. (1995): Strictly Roughly Convexlike Functions. Preprint 95–02, IWR, University of Heidelberg

    Google Scholar 

  13. Phu, H. X. (1993): γ-Subdifferential and γ-Convexity of Functions on the Real Line. Applied Mathematics & Optimization 27, 145–160

    Article  Google Scholar 

  14. Phu, H. X. (1995): γ-Subdifferential and γ-Convexity of Functions on a Normed Space. Journal of Optimization Theory and Applications 85, 649–676

    Article  Google Scholar 

  15. Hogan, W. W. (1973): Point-to-Set Maps in Mathematical Programming. SIAM Review 15 (3), 591–603

    Article  Google Scholar 

  16. Bouligand, G. (1932): Sur la Semi-Continuité d’Inclusions et Quelques Sujets Connexes. Enseignement Mathématique, 31 14–22

    Google Scholar 

  17. Kuratowski, K. (1932): Les Fonctions Semi-Continues dans l’Espace des Ensembles Fermés. Fundamenta Mathematicae, 18, 148–159

    Google Scholar 

  18. Aubin J.-P., Frankowska H. (1990): Set-Valued Analysis. Birkhäuser, Boston-Basel-Berlin

    Google Scholar 

  19. Berge, C. (1963): Topological Spaces. Oliver & Boyd, Edinburgh and London

    Google Scholar 

  20. Feichtinger, G., Hartl, R. F. (1986): Optimale Kontrolle Ökonomischer Prozesse. Walter de Gruyter, West-Berlin

    Book  Google Scholar 

  21. Ioffe, A. D., Tichomirov, V. M. (1979): Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam New York Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phu, H.X., Bock, H.G., Pickenhain, S. (2000). Rough Stability of Solutions to Nonconvex Optimization Problems. In: Dockner, E.J., Hartl, R.F., Luptačik, M., Sorger, G. (eds) Optimization, Dynamics, and Economic Analysis. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57684-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57684-3_3

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-642-63327-0

  • Online ISBN: 978-3-642-57684-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics