Skip to main content

Learning by Selection

  • Conference paper
The Biology of Learning

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 29))

Abstract

Living organisms are “open” thermodynamic systems (19) that possess an internal structure and thus correspond to a privileged state of organization of matter in both space and time. The question then arises: where does this order come from? From inside the organism, from the outside world, or from both? To simplify, two extreme views can be put forward to account for this higher internal order, placing the emphasis either outside or within the biological system with respect to its relationships with the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benoît, P., and Changeux, J.-P. 1975. Consequences of tenotomy on the evolution of multi-innervation in developing rat soleus muscle. Brain Res. 99: 354–358.

    Article  PubMed  Google Scholar 

  2. Benoit, P., and Changeux, J.-P. 1978. Consequences of blocking nerve activity on the evolution of multi-innervation in the regenerating neuromuscular junction of the rat. Brain. Res. 149: 89–96.

    CAS  Google Scholar 

  3. Berridge, M., and Rapp, P. 1979. A comparative survey of the function, mechanism and control of cellular oscillations. J. Exp. Biol. 81: 217–280.

    PubMed  CAS  Google Scholar 

  4. Bodmer, W., and Cavalli-Sforza, L. 1976. Genetics, evolution and man. San Francisco: W. Freeman.

    Google Scholar 

  5. Changeux, J.-P. 1972. Le Cerveau et l’évènement. Communications 18: 37–47.

    Article  Google Scholar 

  6. Changeux, J.-P. 1980. Genetic determinism and epigenesis of the neuronal network; Is there a compromise between Chomsky and Piaget? In Language and Learning, ed. M. Piattelli, pp. 184–202. Cambridge, MA: Harvard University Press.

    Google Scholar 

  7. Changeux, J.-P. 1981. The acetylcholine receptor: an allosteric membrane protein. Harvey Lect. 75: 85–254.

    CAS  Google Scholar 

  8. Changeux, J.-P. 1983. Concluding remarks: about the “singularity” of nerve cells and its ontogenesis. Progr. Brain Res. 58: 465–478.

    Article  CAS  Google Scholar 

  9. Changeux, J.-P. 1983. L’Homme neuronal. Paris: Fayard.

    Google Scholar 

  10. Changeux, J.-P.; Courrège, P.; and Danchin, A. 1973. A theory of the epigenesis of neural networks by selective stabilization of synapses. Proc. Natl. Acad. Sci. USA 70: 2974–2978.

    Article  PubMed  CAS  Google Scholar 

  11. Changeux, J.-P., and Danchin, A. 1974. Apprendre par stabilisation sélective de synapses en cours de développement. In L’unité de l’homme, eds. E. Morin and M. Piatteli, pp. 320–357. Paris: Le Seuil.

    Google Scholar 

  12. Changeux, J.-P., and Danchin, A. 1976. Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature 264: 705–712.

    Article  PubMed  CAS  Google Scholar 

  13. Chaudhari, N., and Hahn, W. 1983. Genetic expression in the developing brain. Science 220: 924–928.

    Article  PubMed  CAS  Google Scholar 

  14. Crick, F., and Mitchison, G. 1983. The function of dream sleep. Nature 304: 111–114.

    Article  PubMed  CAS  Google Scholar 

  15. Devillers-Thierry, A.; Giraudat, J.; Bentaboulet, M.; Changeux, J.-P. 1983. Complete mRNA coding sequences of the acetylcholine binding a -subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80: 2067–2071.

    Article  Google Scholar 

  16. Edelman, G. 1978. The Mindful Brain. Cortical Organization and the Group-selective Theory of Higher Brain Functions. Cambridge, MA: MIT Press.

    Google Scholar 

  17. Edelman, G. 1981. Group selection as the basis for higher brain function. In The Organization of the Cerebral Cortex, eds. F. Schmitt et al. Cambridge, MA: MIT Press.

    Google Scholar 

  18. Edelman, G., and Finkel, L. 1984. Neuronal group selection in the cerebral cortex. In Dynamic Aspects of Neocortical Function, eds. G. Edelman et al. New York: John Wiley, in press.

    Google Scholar 

  19. Glansdorff, P., and Prigogine, I. 1971. Structure, stabilité et fluctuations. Paris: Masson.

    Google Scholar 

  20. Gouzé, J.-L.; Lasry, J.-M.; and Changeux, J.-P. 1983. Selective stabilization of muscle innervation during development: a mathematical model. Biol. Cybern. 46: 207–215.

    Article  Google Scholar 

  21. Greene, P. 1962. On looking for neuronal networks and “cell assemblies” that underlie behavior. Bull. Math. Biophys. 24: 247–275; 395–411.

    Article  PubMed  CAS  Google Scholar 

  22. Grossberg, S. 1980. How does the brain build a cognitive code? Psych. Rev. 87: 1–51.

    CAS  Google Scholar 

  23. Hebb, D. 1949. The Organization of Behavior. New York: Wiley.

    Google Scholar 

  24. Heidmann, T., and Changeux, J.-P. 1982. Un modèle moléculaire de régulation d’efficacité au niveau postsynaptique d’une synapse chimique. C.R. Acad. Sc. Paris 295: 665–670.

    CAS  Google Scholar 

  25. Heidmann, T.; Oswald, R.; and Changeux, J.-P. 1983. Multiple sites of action for non competitive blockers on acetylcholine receptor rich membrane fragments from Torpedo marmorata. Biochemistry 22: 3112–3127.

    Article  PubMed  CAS  Google Scholar 

  26. Henderson, C.E.; Huchet, M.; and Changeux, J.-P. 1981. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells. Proc. Nat. Acad. Sci. USA 78: 2625–2629.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson, C.E.; Huchet, M.; and Changeux, J.-P. 1983. Denervation increases the neurite-promoting activity in extracts of skeletal muscle. Nature 302: 609–611.

    Article  PubMed  CAS  Google Scholar 

  28. Hopfield, J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA 79: 2554–2558.

    Article  PubMed  CAS  Google Scholar 

  29. Hubel, P., and Wiesel, T. 1977. Functional architecture of macaque monkey visual cortex. Ferrier Lecture. Proc. Roy. Soc. Lond. B 198: 1–59.

    Article  CAS  Google Scholar 

  30. Hunter, W.S. 1913. The delayed reaction in animals. Behay. Monogr. 2: 6.

    Google Scholar 

  31. James, W. 1909. Précis de psychologie. Paris: Marcel Rivière.

    Google Scholar 

  32. Jerne, N. 1967. Antibodies and learning: selection versus instruction. In The Neurosciences, eds. G. Quarton et al., pp. 200–205. New York: Rockefeller University Press.

    Google Scholar 

  33. Jouvet, M. 1974. Neurobiologie de rêve. In L’Unité de l’Homme, eds. E. Morin and M. Piattelli, pp. 354–392. Paris: Ed. Le Seuil.

    Google Scholar 

  34. Kandel, E. 1979. Cellular insights into behavior and learning. Harvey Lect. 73: 19–92.

    PubMed  CAS  Google Scholar 

  35. Katz, B. 1966. Nerve Muscle and Synapse. New York: McGraw-Hill.

    Google Scholar 

  36. Kosslyn, S. 1980. Images and Mind. Cambridge, MA: Harvard University Press.

    Google Scholar 

  37. Krebs, G., and Beavo, J. 1979. Phosphorylation, dephosphorylation of enzymes. Ann. Rev. Biochem. 48: 923–960.

    Article  PubMed  CAS  Google Scholar 

  38. Lamouroux, A.; Biguet, N.; Samolyk, D.; Privat, A.; Salomon, J.- C.; Pujol, F.; and Mallet, J. 1982. Identification of cDNA clones coding for rat tyrosine hydroxylase antigen. Proc. Natl. Acad. Sci. USA 79: 3881–3885.

    Article  PubMed  CAS  Google Scholar 

  39. Leder, P. 1981. The genetics of antibody diversity. Sci. Am. 246 No. 5: 72–83.

    Google Scholar 

  40. Levinthal, F.; Macagno, E.; and Levinthal, C. 1976. Anatomy and development of identified cells in isogenic organisms. Cold Spring Harbor. Symp. Quant. Biol. 40: 321–331.

    CAS  Google Scholar 

  41. Little, W. 1974. Existence of persistent states in the brain. Math. Biosci. 19: 101–120.

    Article  Google Scholar 

  42. Little, W., and Shaw, G. 1975. A statistical theory of short and long term memory. Behay. Biol. 14: 115.

    CAS  Google Scholar 

  43. Little, W., and Shaw, G. 1978. Analytic study of the memory storage capacity of neural network. Math. Biosci. 39: 281–290.

    Article  Google Scholar 

  44. Loeb, J. 1900. Comparative Physiology of the Brain and Comparative Psychology. New York: Putnam.

    Book  Google Scholar 

  45. Mariani, J. 1983. Elimination of synapses during the development of the central nervous system. Progr. Brain Res. 58: 383–392.

    Article  CAS  Google Scholar 

  46. Neisser, U. 1976. Cognition and reality. San Francisco: Freeman.

    Google Scholar 

  47. Noda, M.; Takahashi, H.; Tanabe, T.; Toyosato, M.; Kikyotani, S.; Furutani, Y.; Horose, T.; Takashima, H.; Inayama, S.; Miyata, T.; and Numa, S. 1983. Structural homology of Torpedo californica AchR subunits. Nature 302: 528–532.

    Article  PubMed  CAS  Google Scholar 

  48. Peretto, P. 1983. Collective properties of neural networks: a statistical physics approach. Biol. Cybern., in press.

    Google Scholar 

  49. Purves, D., and Lichtman, J. 1980. Elimination of synapses in the developing nervous system. Science 210: 158–157.

    Article  Google Scholar 

  50. Shepard, R. 1975. Form, formation and transformation of internal representations. In Information Processing and Cognition, ed. R. Solso. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  51. Shepard, R. 1984. Ecological constraints on internal representation. Third J. Gibson Memorial Lecture, Cornell University, in press.

    Google Scholar 

  52. Stent, G. 1973. A physiological mechanism for Hebb’s postulate of learning. Proc. Natl. Acad. Sci. USA 70: 997–1001.

    Article  PubMed  CAS  Google Scholar 

  53. Thom, R. 1968. Topologie et signification in “l’Age de la Science” n° 4. In Modèles mathématiques de la morphogénèse, ed. R. Thom. Paris: Bourgeois.

    Google Scholar 

  54. Thom, R. 1980. Modèles mathématiques de la morphogénèse. Paris: Bourgeois.

    Google Scholar 

  55. Tolman, E.C. 1948. Cognitive maps in rats and men. Psychol. Rev. 55: 189–208.

    CAS  Google Scholar 

  56. Urbain. 1981. Le réseau immuniaire. La Recherche 126: 1056–1066.

    Google Scholar 

  57. Von der Malsburg, C. 1981. The correlation theory of brain function. Internal report 81–2, July 1981. Göttingen: Department of Neurobiology, Max Planck Institute for Biophysical Chemistry.

    Google Scholar 

  58. Young, J.Z. 1973. Memory as a selective process. Australian Academy of Science Report: Symposium on Biological Memory, pp. 25–45.

    Google Scholar 

  59. Note: For references before 1900, see: Bercherie, P. 1983. Génèse des concepts freudiens. Paris: Navarin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Marler H. S. Terrace

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Berlin, Heildelberg, New York, Tokyo: Springer-Verlag

About this paper

Cite this paper

Changeux, JP., Heidmann, T., Patte, P. (1984). Learning by Selection. In: Marler, P., Terrace, H.S. (eds) The Biology of Learning. Dahlem Workshop Reports, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70094-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70094-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70096-5

  • Online ISBN: 978-3-642-70094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics