Skip to main content

Abstract

This chapter describes the theory and modeling of IDTs employed for SAW excitation and detection. First, the delta-function model is detailed. Then the effects of peripheral circuits are discussed. Unidirectional transducers (UDTs) are also included in the discussion, and the p matrix method [1] is introduced as an effective tool for the characterization of UDTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Tobolka: Mixed Matrix Representation of SAW Transducers, IEEE Trans. Sonics and Ultrason., SU-26 (1979) pp. 426–428.

    Google Scholar 

  2. R.M. White and F.W. Voltmer: Direct Piezoelectric Coupling to Surface Elastic Waves, Appl. Phys. Lett., 17 (1965) pp. 314–316.

    Article  Google Scholar 

  3. R.C. Rosenfeld, R.B. Brown and C.S. Hartmann: Unidirectional Acoustic Surface Wave Filters with 2 dB Insertion Loss, Proc. IEEE Ultrason. Symp. (1974) pp. 425–428.

    Google Scholar 

  4. D.C. Malocha: Quadrature 3-Phase Unidirectional Transducer, IEEE Trans. Sonics and Ultrason., SU-26 (1979) pp. 313–315.

    Google Scholar 

  5. K. Yamanouchi, F. Nyfeller and K. Shibayama: Low Insertion Loss Acoustic Surface Wave Filter Using Group-type Unidirectional Interdigital Transducers, Proc. IEEE Ultrason. Symp. (1975) pp. 317–321.

    Google Scholar 

  6. T. Kodama, H. Kawabata, Y. Yasuhara and H. Sato: Design of Low-Loss SAW Filters Employing Distributed Acoustic Reflection Transducers, Proc. IEEE Ultrason. Symp. (1986) pp. 313–324.

    Google Scholar 

  7. C.S. Hartmann and B.P. Abott: Overview of Design Challenges for Single Phase Unidirectional SAW Filters, Proc. IEEE Ultrason. Symp. (1989) pp. 79–89.

    Google Scholar 

  8. K Yamanouchi and H. Furuyashiki: New Low-Loss SAW Filter Using Internal Floating Electrode Reflection Types of Single-Phase Unidirectional Transducer, Electron. Lett., 20 (1984) pp. 989–990.

    Article  Google Scholar 

  9. P.V. Wright: Natural Single-Phase Unidirectional Transducer, Proc. IEEE Ultrason. Symp. (1985) pp. 58–63.

    Google Scholar 

  10. C.S. Hartmann, P.V. Wright, R.J. Kansy and E.M. Garber: Analysis of SAW Interdigital Transducer with Internal Reflections and the Application to the Design of Single-Phase Unidirectional Transducers, Proc. IEEE Ultrason. Symp. (1982) pp. 40–45.

    Google Scholar 

  11. H. Engan: Excitation of Elastic Surface Waves by Spatial Harmonics of Interdigital Transducers, IEEE Trans. Electron. Device, ED-16 (1969) pp. 1014–1017.

    Google Scholar 

  12. H. Engan: Surface Acoustic Wave Multi-Electrode Transducers, IEEE Trans. Sonics and Ultrason., SU-22 (1975) pp. 395–401.

    Google Scholar 

  13. R.F. Milsom, N.H.C. Reilly and M. Redwood: Analysis of Generation and Detection of Surface and Bulk Acoustic Waves by Interdigital Transducers, IEEE Trans. Sonics and Ultrason., SU-24 (1977) pp. 147–166.

    Google Scholar 

  14. D.P. Morgan: Surface-Wave Devices for Signal Processing, Chap. 3, Elsevier, Amsterdam (1985) pp. 39–55.

    Google Scholar 

  15. J.J. Campbell and W.R. Jones: A Method for Optimal Crystal Cuts and Propagation Directions for Excitation of Piezoelectric Surface Waves, IEEE Trans. Sonics and Ultrason., SU-15 (1968) pp. 209–217.

    Google Scholar 

  16. K.A. Ingebrigtsen: Surface Waves in Piezoelectrics, J. Appl. Phys., 40 (1969) pp. 2681–2686.

    Article  Google Scholar 

  17. S. Datta, B.J. Hunsinger and D.C. Malocha: A Generalized Model for Periodic Transducers with Arbitrary Voltages, IEEE Trans. Sonics and Ultrason. SU-26, 3 (1980) pp. 235–242.

    Google Scholar 

  18. K. Hashimoto Y. Koseki and M. Yamaguchi: Boundary Element Method Analysis of Interdigital Transducers Having Arbitrary Metallisation Ratio, Japan. J. Appl. Phys., 30, Suppl. 30–1 (1991) pp. 1425–1427.

    Google Scholar 

  19. C.S. Hartmann and B.G. Secrest: End Effects in Interdigital Surface Wave Transducers, Proc. IEEE Ultrason. Symp. (1972) pp. 413–416.

    Google Scholar 

  20. R.H. Tancrell and M.G. Holland: Acoustic Surface Wave Filters, Proc. IEEE, 59 (1971) pp. 393–409.

    Article  Google Scholar 

  21. D.P. Morgan: Surface-Wave Devices for Signal Processing, Chap. 3, Elsevier, Amsterdam (1985) pp. 343–353.

    Google Scholar 

  22. W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder and H.J. Show: Analysis of Interdigital Surface Wave Transducers By Use of an Equivalent Circuit Model, IEEE Trans. Microwave Theory and tech., MTT-17 (1969) pp. 856–864.

    Google Scholar 

  23. W.R. Smith: Experimental Distinction Between Crossed-Field and In-Line Three-Port Circuit Models for Interdigital Transducers, IEEE Trans. Microwave Theory and tech., MTT-17 (1974) pp. 960–964.

    Google Scholar 

  24. W.P. Mason (ed): Physical Acoustics, Vol. 1A, Academic Press (1964) pp. 335–416.

    Google Scholar 

  25. R.C.M. Li and J. Melngailis: The Influence of Stored Energy at Step Discontinuities on the Behavior of Surface-Wave Gratings, IEEE Trans. Sonics and Ultrason., SU-22 (1975) pp. 189–198.

    Google Scholar 

  26. T. Kojima and K. Shibayama: An Analysis of an Equivalent Circuit Model for an Interdigital Surface-Acoustic-Wave Transducer, Jpn. J. Appl. Phys., 27, Suppl. 27–1 (1988) pp. 163–165.

    Google Scholar 

  27. G.S. Kino: Acoustic Waves: Devices, Imaging, & Analog Signal Processing, Prentice-Hall, Englewood Cliffs (1987).

    Google Scholar 

  28. B.A. Auld: Acoustic Waves and Fields in Solids, Vol. II, Chap. 12, Wiley and Sons, New York (1973) pp. 271–332.

    Google Scholar 

  29. C.C.W. Ruppel, W. Ruile, G. Sholl, K.C. Wagner and O. Männer: Review of Models for Low-Loss Filter Design and Applications, Proc. IEEE Ultrason. Symp. (1994) pp. 313–324.

    Google Scholar 

  30. D.P. Chen and H.A. Haus: Analysis of Metal-Strip SAW Grating and Transducers, IEEE Trans. Sonics and Ultrason., SU-26 (1985) pp. 395–408.

    Google Scholar 

  31. B.P. Abbott, C.S. Hartmann and D.C. Malocha: A Coupling-of-Modes Analysis of Chirped Transducers Containing Reflective Electrode Geometries, Proc. IEEE Ultrason. Symp. (1989) pp. 129–134.

    Google Scholar 

  32. A. Nalamwar and M. Epstein: Immittance Characterisation of Acoustic Surface-Wave Transducer, Proc. IEEE, 60 (1072) pp. 336–337.

    Article  Google Scholar 

  33. K. Hashimoto: On Leaky Surface Acoustic Wave and Bulk Acoustic Wave Launched from an Interdigital Transducer, Ph D thesis, Tokyo Institute of Technology (1988) in Japanese.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hashimoto, Ky. (2000). Interdigital Transducers. In: Surface Acoustic Wave Devices in Telecommunications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04223-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04223-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08659-5

  • Online ISBN: 978-3-662-04223-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics